Toyocamycin (BioDeep_00000614772)

   

Chemicals and Drugs natural product


代谢物信息卡片


Toyocamycin

化学式: C12H13N5O4 (291.0967)
中文名称: 4-氨基-5-氰基-7-(beta-d-呋喃核糖)吡咯并[2,3-d]嘧啶
谱图信息: 最多检出来源 Escherichia coli(natural_products) 100%

分子结构信息

SMILES: C1=C(C2=C(N=CN=C2N1C3C(C(C(O3)CO)O)O)N)C#N
InChI: InChI=1S/C12H13N5O4/c13-1-5-2-17(11-7(5)10(14)15-4-16-11)12-9(20)8(19)6(3-18)21-12/h2,4,6,8-9,12,18-20H,3H2,(H2,14,15,16)/t6-,8-,9-,12-/m1/s1

描述信息

An N-glycosylpyrrolopyrimidine that is tubercidin in which the hydrogen at position 5 of the pyrrolopyrimidine moiety has been replaced by a cyano group.
D009676 - Noxae > D000963 - Antimetabolites
D000970 - Antineoplastic Agents
Toyocamycin (Vengicide) is an adenosine analog produced by Streptomyces diastatochromogenes, acts as an XBP1 inhibitor. Toyocamycin blocks RNA synthesis and ribosome function, and induces apoptosis. Toyocamycin affects IRE1α-XBP1 pathway, and inhibits XBP1 mRNA cleavage with an IC50 value of 80 nM with affecting IRE1α auto-phosphorylation. Toyocamycin specifically inhibits CDK9 with an IC50 value of 79 nM[1][2][3].

同义名列表

4 个代谢物同义名

Toyocamycin; B181008; Vengicide; Toyocamycin



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

56 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Yoshihiro Ojima, Naoki Yokota, Yuki Tanibata, Shinsuke Nerome, Masayuki Azuma. Concentrative Nucleoside Transporter, CNT, Results in Selective Toxicity of Toyocamycin against Candida albicans. Microbiology spectrum. 2022 08; 10(4):e0113822. doi: 10.1128/spectrum.01138-22. [PMID: 35913167]
  • Binghua Liu, Qiuhe Wei, Miaoling Yang, Liming Shi, Kecheng Zhang, Beibei Ge. Effect of toyF on wuyiencin and toyocamycin production by Streptomyces albulus CK-15. World journal of microbiology & biotechnology. 2022 Mar; 38(4):65. doi: 10.1007/s11274-022-03234-3. [PMID: 35229201]
  • Jie Xu, Zhangqing Song, Xianhao Xu, Zheng Ma, Andreas Bechthold, Xiaoping Yu. ToyA, a positive pathway-specific regulator for toyocamycin biosynthesis in Streptomyces diastatochromogenes 1628. Applied microbiology and biotechnology. 2019 Sep; 103(17):7071-7084. doi: 10.1007/s00253-019-09959-w. [PMID: 31256228]
  • Xu-Ping Shentu, Zhen-Yan Cao, Yin Xiao, Gu Tang, Kozo Ochi, Xiao-Ping Yu. Substantial improvement of toyocamycin production in Streptomyces diastatochromogenes by cumulative drug-resistance mutations. PloS one. 2018; 13(8):e0203006. doi: 10.1371/journal.pone.0203006. [PMID: 30161195]
  • Sandra Bodeau, Chloé Sauzay, Rémy Nyga, Christophe Louandre, Véronique Descamps, Catherine François, Corinne Godin, Gabriel Choukroun, Antoine Galmiche. Targeting the Unfolded Protein Response as a Potential Therapeutic Strategy in Renal Carcinoma Cells Exposed to Cyclosporine A. Anticancer research. 2017 03; 37(3):1049-1057. doi: 10.21873/anticanres.11416. [PMID: 28314264]
  • Ikuko Takahara, Yuko Akazawa, Maiko Tabuchi, Katsuya Matsuda, Hisamitsu Miyaaki, Youko Kido, Yasuko Kanda, Naota Taura, Ken Ohnita, Fuminao Takeshima, Yusuke Sakai, Susumu Eguchi, Masahiro Nakashima, Kazuhiko Nakao. Toyocamycin attenuates free fatty acid-induced hepatic steatosis and apoptosis in cultured hepatocytes and ameliorates nonalcoholic fatty liver disease in mice. PloS one. 2017; 12(3):e0170591. doi: 10.1371/journal.pone.0170591. [PMID: 28278289]
  • Ken-ichiro Hayashi, Shuichi Kamio, Yutaka Oono, Leroy B Townsend, Hiroshi Nozaki. Toyocamycin specifically inhibits auxin signaling mediated by SCFTIR1 pathway. Phytochemistry. 2009 Jan; 70(2):190-7. doi: 10.1016/j.phytochem.2008.12.020. [PMID: 19171357]
  • T E Renau, J S Lee, H Kim, C G Young, L L Wotring, L B Townsend, J C Drach. Relationship between cytotoxicity and conversion of thiosangivamycin analogs to toyocamycin analogs in cell culture medium. Biochemical pharmacology. 1994 Aug; 48(4):801-7. doi: 10.1016/0006-2952(94)90059-0. [PMID: 8080454]
  • N Perrone-Bizzozero, S Iapalucci-Espinoza, E E Medrano, M T Franze-Fernández. Transcription of ribosomal RNA is differentially controlled in resting and growing BALB/c 3T3 cells. Journal of cellular physiology. 1985 Jul; 124(1):160-4. doi: 10.1002/jcp.1041240125. [PMID: 4044650]
  • D E Bergstrom, A J Brattesani, M K Ogawa, P A Reddy, M J Schweickert, J Balzarini, E De Clercq. Antiviral activity of C-5 substituted tubercidin analogues. Journal of medicinal chemistry. 1984 Mar; 27(3):285-92. doi: 10.1021/jm00369a010. [PMID: 6699874]
  • S Iapalucci-Espinoza, M T Franze-Fernandez. Regulation of rRNA synthesis and processing in animal cells. Effect of nucleoside analogues. The Biochemical journal. 1982 Feb; 202(2):325-32. doi: 10.1042/bj2020325. [PMID: 6212050]