beta-Cyclocitral (BioDeep_00000013436)

 

Secondary id: BioDeep_00000623990, BioDeep_00000859898

human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


2,6,6-Trimethyl-1-cyclohexene-1-carboxaldehyde

化学式: C10H16O (152.1201)
中文名称: β-环柠檬醛, BETA-环柠檬醛
谱图信息: 最多检出来源 Homo sapiens(urine) 47.31%

分子结构信息

SMILES: CC1=C(C(CCC1)(C)C)C=O
InChI: InChI=1S/C10H16O/c1-8-5-4-6-10(2,3)9(8)7-11/h7H,4-6H2,1-3H3

描述信息

Constituent of saffron and many other plant materials. Production by Microcystis subspecies A 50:50 mixture with 2,6,6-Trimethyl-2-cyclohexene-1-carboxaldehyde JQM42-W is used as a flavouring ingredient. beta-Cyclocitral is found in many foods, some of which are orange mint, herbs and spices, fig, and tea.
beta-Cyclocitral is found in fig. beta-Cyclocitral is a constituent of saffron and many other plant materials. beta-Cyclocitral is produced by Microcystis species beta-Cyclocitral is a 50:50 mixture with 2,6,6-Trimethyl-2-cyclohexene-1-carboxaldehyde JQM42-W is used as a flavouring ingredient.

同义名列表

16 个代谢物同义名

2,6,6-Trimethyl-1-cyclohexene-1-carboxaldehyde; 2,6,6-Trimethyl-1-cyclohexen-1-carboxaldehyde; 2,6,6-Trimethyl-1-cyclohexene-1-carbaldehyde; 2,6,6-Trimethylcyclohex-1-ene-1-carbaldehyde; 2,6,6-Trimethyl-cyclohexene-1-carboxaldehyde; 2,6,6-Trimethyl-cyclohexenecarboxaldehyde; 2,6,6-Trimethylcyclohexene-1-carbaldehyde; 1-Formyl-2,6,6-trimethyl-1-cyclohexene; 2,6,6-Trimethylcyclohexenecarbaldehyde; alpha(beta)-Cyclocitral; beta -Cyclocitral; beta-Cyclocitrol; beta-Cyclocitral; β-Cyclocitral; b-Cyclocitral; beta-Cyclocitral



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

19 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Yu Lin, Chaoyue Cheng, Yutai Dai, Weijie Li, Jiping Chen, Mo Chen, Ping Xie, Qiang Gao, Xiaoyue Fan, Xuwei Deng. The origins of odor (β-cyclocitral) under different water nutrient conditions: Algae or submerged plants?. The Science of the total environment. 2024 Jun; 931(?):173024. doi: 10.1016/j.scitotenv.2024.173024. [PMID: 38719048]
  • Hee Ju Yoo, Mi-Young Chung, Hyun-Ah Lee, Soo-Bin Lee, Silvana Grandillo, James J Giovannoni, Je Min Lee. Natural overexpression of CAROTENOID CLEAVAGE DIOXYGENASE 4 in tomato alters carotenoid flux. Plant physiology. 2023 Jan; ?(?):. doi: 10.1093/plphys/kiad049. [PMID: 36715630]
  • Shiduku Taniguchi, Aya Takeda, Masaki Kiryu, Kenji Gomi. Jasmonic Acid-Induced β-Cyclocitral Confers Resistance to Bacterial Blight and Negatively Affects Abscisic Acid Biosynthesis in Rice. International journal of molecular sciences. 2023 Jan; 24(2):. doi: 10.3390/ijms24021704. [PMID: 36675223]
  • Mohammad Faizan, Sadia Haque Tonny, Shadma Afzal, Zeba Farooqui, Pravej Alam, S Maqbool Ahmed, Fangyuan Yu, Shamsul Hayat. β-Cyclocitral: Emerging Bioactive Compound in Plants. Molecules (Basel, Switzerland). 2022 Oct; 27(20):. doi: 10.3390/molecules27206845. [PMID: 36296438]
  • Siyi Du, Haozhe Xu, Mengdan Yang, Ning Pan, Tiefeng Zheng, Chenyi Xu, Yan Li, Zhaojiang Zuo. Toxic mechanism of two cyanobacterial volatiles β-cyclocitral and β-ionone on the photosynthesis in duckweed by altering gene expression. Environmental pollution (Barking, Essex : 1987). 2022 Sep; 308(?):119711. doi: 10.1016/j.envpol.2022.119711. [PMID: 35809713]
  • Wenjun Sun, Junyi Zhan, Tianrun Zheng, Guoming Wu, Haishen Xu, Ying Chen, Min Yao, Jing Zeng, Jun Yan, Hui Chen. Involvement of several putative transporters of different families in β-cyclocitral-induced alleviation of cadmium toxicity in quinoa (Chenopodium quinoa) seedlings. Journal of hazardous materials. 2021 10; 419(?):126474. doi: 10.1016/j.jhazmat.2021.126474. [PMID: 34186425]
  • Deepa Agarwal, Lim Mui, Emma Aldridge, James McKinney, Louise Hewson, Ian Denis Fisk. The progression of lipid oxidation, β-carotenes degradation and sensory perception of batch-fried sliced sweet potato crisps during storage. Food & function. 2021 May; 12(10):4535-4543. doi: 10.1039/d0fo03100c. [PMID: 33903860]
  • S Deshpande, R Manoharan, S Mitra. Exogenous β-cyclocitral treatment primes tomato plants against drought by inducing tolerance traits, independent of abscisic acid. Plant biology (Stuttgart, Germany). 2021 May; 23 Suppl 1(?):170-180. doi: 10.1111/plb.13210. [PMID: 33175459]
  • Sirsha Mitra, Roger Estrada-Tejedor, Daniel C Volke, Michael A Phillips, Jonathan Gershenzon, Louwrance P Wright. Negative regulation of plastidial isoprenoid pathway by herbivore-induced β-cyclocitral in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America. 2021 03; 118(10):. doi: 10.1073/pnas.2008747118. [PMID: 33674379]
  • Marek Rac, Leonard Shumbe, Camille Oger, Alexandre Guy, Claire Vigor, Brigitte Ksas, Thierry Durand, Michel Havaux. Luminescence imaging of leaf damage induced by lipid peroxidation products and its modulation by β-cyclocitral. Physiologia plantarum. 2021 Feb; 171(2):246-259. doi: 10.1111/ppl.13279. [PMID: 33215689]
  • Xiongjie Zheng, Kaijie Zhu, Junli Ye, Elliott J Price, Xiuxin Deng, Paul D Fraser. The effect of β-cyclocitral treatment on the carotenoid content of transgenic Marsh grapefruit (Citrus paradisi Macf.) suspension-cultured cells. Phytochemistry. 2020 Dec; 180(?):112509. doi: 10.1016/j.phytochem.2020.112509. [PMID: 32966904]
  • Michel Havaux. β-Cyclocitral and derivatives: Emerging molecular signals serving multiple biological functions. Plant physiology and biochemistry : PPB. 2020 Oct; 155(?):35-41. doi: 10.1016/j.plaphy.2020.07.032. [PMID: 32738580]
  • Tiefeng Zheng, Min Zhou, Lin Yang, Yan Wang, Yaya Wang, Yiyu Meng, Jialu Liu, Zhaojiang Zuo. Effects of high light and temperature on Microcystis aeruginosa cell growth and β-cyclocitral emission. Ecotoxicology and environmental safety. 2020 Apr; 192(?):110313. doi: 10.1016/j.ecoenv.2020.110313. [PMID: 32066007]
  • Ryuji Yamashita, Beata Bober, Keisuke Kanei, Suzue Arii, Kiyomi Tsuji, Ken-Ichi Harada. Analytical Technique Optimization on the Detection of β-cyclocitral in Microcystis Species. Molecules (Basel, Switzerland). 2020 Feb; 25(4):. doi: 10.3390/molecules25040832. [PMID: 32075007]
  • Nan Meng, Guo-Liang Yan, Dan Zhang, Xiang-Yi Li, Chang-Qing Duan, Qiu-Hong Pan. Characterization of two Vitis vinifera carotenoid cleavage dioxygenases by heterologous expression in Saccharomyces cerevisiae. Molecular biology reports. 2019 Dec; 46(6):6311-6323. doi: 10.1007/s11033-019-05072-3. [PMID: 31535324]
  • Cencen Yu, Chenfei Shi, Jing Tang, Qiuyi Ji, Xuan Wang, Xiaoguang Xu, Guoxiang Wang. Release of taste and odour compounds during Zizania latifolia decay: A microcosm system study. Environmental pollution (Barking, Essex : 1987). 2019 Nov; 254(Pt A):112954. doi: 10.1016/j.envpol.2019.07.122. [PMID: 31398637]
  • Cencen Yu, Chenfei Shi, Ming Ji, Xiaoguang Xu, Zhongqian Zhang, Jie Ma, Guoxiang Wang. Taste and odor compounds associated with aquatic plants in Taihu Lake: distribution and producing potential. Environmental science and pollution research international. 2019 Nov; 26(33):34510-34520. doi: 10.1007/s11356-019-06188-6. [PMID: 31643015]
  • L Grant Bolton, Jaime C Piñero, Bruce A Barrett. Electrophysiological and Behavioral Responses of Drosophila suzukii (Diptera: Drosophilidae) Towards the Leaf Volatile β-cyclocitral and Selected Fruit-Ripening Volatiles. Environmental entomology. 2019 09; 48(5):1049-1055. doi: 10.1093/ee/nvz092. [PMID: 31433837]
  • Jaime C Piñero, Bruce A Barrett, Leland Grant Bolton, Peter A Follett. β-cyclocitral synergizes the response of adult Drosophila suzukii (Diptera: Drosophilidae) to fruit juices and isoamyl acetate in a sex-dependent manner. Scientific reports. 2019 07; 9(1):10574. doi: 10.1038/s41598-019-47081-z. [PMID: 31332263]
  • Alexandra J Dickinson, Kevin Lehner, Jianing Mi, Kun-Peng Jia, Medhavinee Mijar, José Dinneny, Salim Al-Babili, Philip N Benfey. β-Cyclocitral is a conserved root growth regulator. Proceedings of the National Academy of Sciences of the United States of America. 2019 05; 116(21):10563-10567. doi: 10.1073/pnas.1821445116. [PMID: 31068462]
  • Agata Kozioł, Katarzyna Macegoniuk, Ewa Grela, Agnieszka Grabowiecka, Monika Biernat, Stanisław Lochyński. Synthesis of terpenoid oxo derivatives with antiureolytic activity. Molecular biology reports. 2019 Feb; 46(1):51-58. doi: 10.1007/s11033-018-4442-y. [PMID: 30350237]
  • Stefano D'Alessandro, Brigitte Ksas, Michel Havaux. Decoding β-Cyclocitral-Mediated Retrograde Signaling Reveals the Role of a Detoxification Response in Plant Tolerance to Photooxidative Stress. The Plant cell. 2018 10; 30(10):2495-2511. doi: 10.1105/tpc.18.00578. [PMID: 30262551]
  • Leonard Shumbe, Stefano D'Alessandro, Ning Shao, Anne Chevalier, Brigitte Ksas, Ralph Bock, Michel Havaux. METHYLENE BLUE SENSITIVITY 1 (MBS1) is required for acclimation of Arabidopsis to singlet oxygen and acts downstream of β-cyclocitral. Plant, cell & environment. 2017 02; 40(2):216-226. doi: 10.1111/pce.12856. [PMID: 27813110]
  • Elisabetta Versace, Anna Eriksson, Federico Rocchi, Irene Castellan, Paola Sgadò, Albrecht Haase. Physiological and behavioral responses in Drosophila melanogaster to odorants present at different plant maturation stages. Physiology & behavior. 2016 09; 163(?):322-331. doi: 10.1016/j.physbeh.2016.05.027. [PMID: 27195459]
  • Melanie Carmody, Peter A Crisp, Stefano d'Alessandro, Diep Ganguly, Matthew Gordon, Michel Havaux, Verónica Albrecht-Borth, Barry J Pogson. Uncoupling High Light Responses from Singlet Oxygen Retrograde Signaling and Spatial-Temporal Systemic Acquired Acclimation. Plant physiology. 2016 07; 171(3):1734-49. doi: 10.1104/pp.16.00404. [PMID: 27288360]
  • Koji Tomita, Masateru Hasegawa, Suzue Arii, Kiyomi Tsuji, Beata Bober, Ken-Ichi Harada. Characteristic oxidation behavior of β-cyclocitral from the cyanobacterium Microcystis. Environmental science and pollution research international. 2016 Jun; 23(12):11998-2006. doi: 10.1007/s11356-016-6369-y. [PMID: 26961531]
  • Shoib Ahmad Baba, Deepti Jain, Nazia Abbas, Nasheeman Ashraf. Overexpression of Crocus carotenoid cleavage dioxygenase, CsCCD4b, in Arabidopsis imparts tolerance to dehydration, salt and oxidative stresses by modulating ROS machinery. Journal of plant physiology. 2015 Sep; 189(?):114-25. doi: 10.1016/j.jplph.2015.11.001. [PMID: 26595090]
  • Feifei Lv, Jun Zhou, Lizhang Zeng, Da Xing. β-cyclocitral upregulates salicylic acid signalling to enhance excess light acclimation in Arabidopsis. Journal of experimental botany. 2015 Aug; 66(15):4719-32. doi: 10.1093/jxb/erv231. [PMID: 25998906]
  • Satoshi Nakaya, Atsushi Usami, Tomohito Yorimoto, Mitsuo Miyazawa. Characteristic Chemical Components and Aroma-active Compounds of the Essential Oils from Ranunculus nipponicus var. submersus Used in Japanese Traditional Food. Journal of oleo science. 2015; 64(6):595-601. doi: 10.5650/jos.ess14265. [PMID: 25891110]
  • Angela Rubio-Moraga, José Luis Rambla, Asun Fernández-de-Carmen, Almudena Trapero-Mozos, Oussama Ahrazem, Diego Orzáez, Antonio Granell, Lourdes Gómez-Gómez. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus. Plant molecular biology. 2014 Nov; 86(4-5):555-69. doi: 10.1007/s11103-014-0250-5. [PMID: 25204497]
  • Rebekah S Marsh, Yan Yan, Vanessa M Reed, Damian Hruszkewycz, Robert W Curley, Earl H Harrison. {beta}-Apocarotenoids do not significantly activate retinoic acid receptors {alpha} or {beta}. Experimental biology and medicine (Maywood, N.J.). 2010 Mar; 235(3):342-8. doi: 10.1258/ebm.2009.009202. [PMID: 20404052]
  • Marc B Neumann, Willi Gujer, Urs von Gunten. Global sensitivity analysis for model-based prediction of oxidative micropollutant transformation during drinking water treatment. Water research. 2009 Mar; 43(4):997-1004. doi: 10.1016/j.watres.2008.11.049. [PMID: 19110290]
  • S B Watson, F Jüttner, O Köster. Daphnia behavioural responses to taste and odour compounds: ecological significance and application as an inline treatment plant monitoring tool. Water science and technology : a journal of the International Association on Water Pollution Research. 2007; 55(5):23-31. doi: 10.2166/wst.2007.158. [PMID: 17489390]
  • C Höckelmann, F Jüttner. Volatile organic compound (VOC) analysis and sources of limonene, cyclohexanone and straight chain aldehydes in axenic cultures of Calothrix and Plectonema. Water science and technology : a journal of the International Association on Water Pollution Research. 2004; 49(9):47-54. doi: . [PMID: 15237606]