Subcellular Location: molybdopterin synthase complex
Found 9 associated metabolites.
1 associated genes.
MOCS2
Cysteine S-sulfate
Cysteine-S-sulfate (SSC) is produced by reaction of inorganic sulfite and cystine by a yet unknown pathway and is a very potent NMDA-receptor agonist. Electrophysiological studies have shown that SSC displays depolarizing properties similar to glutamate. Patients affected with either Molybdenum cofactor deficiency (MOCOD, an autosomal recessive disease that leads to a combined deficiency of the enzymes sulphite oxidase, an enzyme that catalyzes the conversion of sulfite to inorganic sulfate, xanthine dehydrogenase and aldehyde oxidase) or isolated sulphite oxidase deficiency (ISOD, an extremely rare autosomal recessive disorder with identical clinical manifestations to MOCOD) excrete elevated levels of SSC. This rare disorder is associated with brain damage (seizures, spastic quadriplegia, and cerebral atrophy), mental retardation, dislocated ocular lenses, blindness, and excretion in the urine of abnormally large amounts of SSC, sulfite, and thiosulfate but no inorganic sulfate (PMID: 17764028, 15558695). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID C127; [MS2] KO008902 KEIO_ID C127
Allysine
Allysine (CAS: 1962-83-0), also known as 2-amino-6-oxohexanoic acid or 6-oxonorleucine, belongs to the class of organic compounds known as alpha-amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Outside of the human body, allysine has been detected, but not quantified in, several different foods, such as winged beans, wasabi, common verbena, arrowhead, and oats. This could make allysine a potential biomarker for the consumption of these foods. Allysine is a derivative of lysine used in the production of elastin and collagen. It is produced by the actions of the enzyme lysyl oxidase in the extracellular matrix and is essential in the crosslink formation that stabilizes collagen and elastin.
Molybdenum
Molybdenum is a transition metal with the atomic symbol Mo, atomic number 42, and atomic weight 95.94. The pure metal is silvery white in color, fairly soft, and has one of the highest melting points of all pure elements. Physiologically, it exists as an ion in the body. It is an essential trace element, being a component of the enzymes xanthine oxidase, aldehyde oxidase, and nitrate reductase. There is a trace requirement for molybdenum in plants, and soils can be barren due to molybdenum deficiencies. Plants and animals generally have molybdenum present in amounts of a few parts per million. In animals molybdenum is a cofactor of the enzyme xanthine oxidase which is involved in the pathways of purine degradation and formation of uric acid. In some animals, adding a small amount of dietary molybdenum enhances growth. Francis Crick suggested that since molybdenum is an essential trace element that plays an important role in many enzymatic reactions, despite being less abundant than the more common elements, such as chromium and nickel, that perhaps this fact is indicative of "Panspermia." Crick theorized that if it could be shown that the elements represented in terrestrial living organisms correlate closely with those that are abundant in some class of star - molybdenum stars, for example, that this would provide evidence of such Directed Panspermia. In small quantities, molybdenum is effective at hardening steel. Molybdenum is important in plant nutrition, and is found in certain enzymes, including xanthine oxidase. Molybdenum is used to this day in high-strength alloys and in high-temperature steels. Special molybdenum-containing alloys, such as the Hastelloys, are notably heat-resistant and corrosion-resistant. Molybdenum is used in oil pipelines, aircraft and missile parts, and in filaments. Molybdenum finds use as a catalyst in the petroleum industry, especially in catalysts for removing organic sulfurs from petroleum products. It is used to form the anode in some x-ray tubes, particularly in mammography applications. And is found in some electronic applications as the conductive metal layers in thin-film transistors (TFTs). Molybdenum disulfide is a good lubricant, especially at high temperatures. And Mo-99 is used in the nuclear isotope industry. Molybdenum pigments range from red-yellow to a bright red orange and are used in paints, inks, plastics, and rubber compounds. Molybdenum is a Group 6 chemical element with the symbol Mo and atomic number 42. The free element, which is a silvery metal, has the sixth-highest melting point of any element. It readily forms hard, stable carbides, and for this reason it is often used in high-strength steel alloys. Molybdenum does not occur as a free metal on Earth, but rather in various oxidation states in minerals. Industrially, molybdenum compounds are used in high-pressure and high-temperature applications, as pigments and catalysts. Molybdenum-containing enzymes are used as catalysts by some bacteria to break the chemical bond in atmospheric molecular nitrogen, allowing biological nitrogen fixation. At least 50 molybdenum-containing enzymes are now known in bacteria and animals, though only the bacterial and cyanobacterial enzymes are involved in nitrogen fixation. Owing to the diverse functions of the remainder of the enzymes, molybdenum is a required element for life in higher organisms (eukaryotes), though not in all bacteria. [Wikipedia]. Molybdenum is found in many foods, some of which are cabbage, gooseberry, french plantain, and turnip. D018977 - Micronutrients > D014131 - Trace Elements