Reaction Process: Reactome:R-DRE-77350
Beta oxidation of hexanoyl-CoA to butanoyl-CoA related metabolites
find 8 related metabolites which is associated with chemical reaction(pathway) Beta oxidation of hexanoyl-CoA to butanoyl-CoA
(S)-Hydroxyhexanoyl-CoA + NAD ⟶ 3-Oxohexanoyl-CoA + H+ + NADH
(S)-Hydroxyhexanoyl-CoA
C27H46N7O18P3S (881.1832806000001)
(s)-3-hydroxyhexanoyl-coa is a member of the class of compounds known as (s)-3-hydroxyacyl coas (s)-3-hydroxyacyl coas are organic compounds containing a (S)-3-hydroxyl acylated coenzyme A derivative. Thus, (s)-3-hydroxyhexanoyl-coa is considered to be a fatty ester lipid molecule (s)-3-hydroxyhexanoyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). (s)-3-hydroxyhexanoyl-coa can be found in a number of food items such as common grape, yam, grass pea, and roman camomile, which makes (s)-3-hydroxyhexanoyl-coa a potential biomarker for the consumption of these food products. (S)-Hydroxyhexanoyl-CoA is an intermediate in fatty acid metabolism, being the substrate of the enzymes beta-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.211) and 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35). (S)-Hydroxyhexanoyl-CoA is also an intermediate in fatty acid elongation in mitochondria, the substrate of the enzymes enoyl-CoA hydratase (EC 4.2.1.17) and long-chain-enoyl-CoA hydratase (EC 4.2.1.74) (KEGG).
3-Oxohexanoyl-CoA
3-Oxohexanoyl-CoA is an intermediate in Fatty acid elongation in mitochondria. 3-Oxohexanoyl-CoA is the 3rd to last step in the synthesis of Hexanoyl-CoA and is converted from Butanoyl-CoA via the enzyme acetyl-CoA acyltransferase 2 (EC 2.3.1.16). It is then converted to (S)-Hydroxyhexanoyl-CoA via the 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35). [HMDB]. 3-Oxohexanoyl-CoA is found in many foods, some of which are soy bean, cloudberry, other bread, and lemon thyme. 3-Oxohexanoyl-CoA is an intermediate in Fatty acid elongation in mitochondria. 3-Oxohexanoyl-CoA is the 3rd to last step in the synthesis of Hexanoyl-CoA and is converted from Butanoyl-CoA via the enzyme acetyl-CoA acyltransferase 2 (EC 2.3.1.16). It is then converted to (S)-Hydroxyhexanoyl-CoA via the 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35).
Hydrogen Ion
Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])
Nicotinamide adenine dinucleotide
C21H26N7O14P2- (662.1012936000001)
COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
coenzyme A(4-)
C21H32N7O16P3S-4 (763.0839062)
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
beta-NADH
C21H27N7O14P2-2 (663.1091182000001)
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
acetyl-CoA(4-)
C23H34N7O17P3S-4 (805.0944704000001)
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Butanoyl-CoA
C25H38N7O17P3S-4 (833.1257688000001)
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS