Reaction Process: PlantCyc:VALLEYOAK_PWY-7071
steviol glucoside biosynthesis (rebaudioside A biosynthesis) related metabolites
find 8 related metabolites which is associated with chemical reaction(pathway) steviol glucoside biosynthesis (rebaudioside A biosynthesis)
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
Stevioside
Stevioside is a diterpene glycoside that is rubusoside in which the hydroxy group at position 2 of the allylic beta-D-glucoside has been converted to the corresponding beta-D-glucoside. It is a natural herbal sweetener that is 250-300 times sweeter than sucrose (though with a bitter aftertaste), extracted from the Stevia rebaudiana plant native to South America. It has a role as a sweetening agent, an antioxidant, an antineoplastic agent, a hypoglycemic agent, an anti-inflammatory agent and a plant metabolite. It is a diterpene glycoside, an ent-kaurane diterpenoid, a beta-D-glucoside, a tetracyclic diterpenoid and a bridged compound. It is functionally related to a steviol and a rubusoside. Stevioside is a natural product found in Asteraceae, Stevia rebaudiana, and Bos taurus with data available. See also: Stevia rebaudiuna Leaf (part of). Stevioside is a constituent of Stevia rebaudiana (stevia). Sweetening agent which is 300 times sweeter than sucrose. Stevia rebaudiana is extensively cultivated in Japan, and Stevioside is a permitted sweetener in that country Rebaudioside B, D, and E may also be present in minute quantities; however, it is suspected that rebaudioside B is a byproduct of the isolation technique. The two majority compounds stevioside and rebaudioside, primarily responsible for the sweet taste of stevia leaves, were first isolated by two French chemists in 1931 A diterpene glycoside that is rubusoside in which the hydroxy group at position 2 of the allylic beta-D-glucoside has been converted to the corresponding beta-D-glucoside. It is a natural herbal sweetener that is 250-300 times sweeter than sucrose (though with a bitter aftertaste), extracted from the Stevia rebaudiana plant native to South America. Constituent of Stevia rebaudiana (stevia). Sweetening agent which is 300 times sweeter than sucrose. Stevia rebaudiana is extensively cultivated in Japan, and Stevioside is a permitted sweetener in that country D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Stevioside is a natural sweetener extracted from leaves of Stevia rebaudiana, with anticancer activity[1]. Stevioside is a natural sweetener extracted from leaves of Stevia rebaudiana, with anticancer activity[1]. Stevioside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57817-89-7 (retrieved 2024-08-26) (CAS RN: 57817-89-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Hydrogen Ion
Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])
Rebaudioside A
Rebaudioside A is a rebaudioside that is rubusoside in which the hydroxy groups at positions 3 and 4 of the beta-D-glucopyranosyloxy group at the 13alpha position have both been converted to the corresponding beta-D-glucopyranoside. It has a role as a sweetening agent. It is a beta-D-glucoside, a tetracyclic diterpenoid and a rebaudioside. It is functionally related to a rubusoside and a beta-D-Glcp-(1->2)-[beta-D-Glcp-(1->3)]-beta-D-Glcp. Rebaudioside A is under investigation in clinical trial NCT03510624 (Acute Effect of Rebaudioside A on Glucose Excursion During an Oral Glucose Tolerance Test in Type 2 Diabetes Mellitus). Rebaudioside A is a natural product found in Stevia rebaudiana and Bos taurus with data available. See also: Stevia rebaudiuna Leaf (part of). Rebaudioside A belongs to the class of organic compounds known as steviol glycosides. These are prenol lipids containing a carbohydrate moiety glycosidically linked to a steviol (a diterpenoid based on a 13-hydroxykaur-16-en-18-oic acid) moiety. Rebaudioside A is an extremely weak basic (essentially neutral) compound (based on its pKa). Rebaudioside A is a constituent of Stevia rebaudiana (stevia). Rebaudioside B, D, and E may also be present in minute quantities; however, it is suspected that rebaudioside B is a byproduct of the isolation technique. The two major compounds stevioside and rebaudioside, primarily responsible for the sweet taste of stevia leaves, were first isolated by two French chemists in 1931. A rebaudioside that is rubusoside in which the hydroxy groups at positions 3 and 4 of the beta-D-glucopyranosyloxy group at the 13alpha position have both been converted to the corresponding beta-D-glucopyranoside. Constituent of Stevia rebaudiana (stevia) Rebaudioside A is a steviol glycoside and α-glucosidase inhibitor with an IC50 of 35.01 ug/mL. Rebaudioside A is a steviol glycoside and α-glucosidase inhibitor with an IC50 of 35.01 ug/mL.
Rubusoside
Rubusoside is a steviol glycoside that is steviol in which both the carboxy group and the tertiary allylic hydroxy group have been converted to their corresponding beta-D-glucosides. A precious bioactive natural sweetener which mainly exists the in Chinese sweet tea plant, Rubus suavissimus. It has a role as a sweetening agent and a plant metabolite. It is a beta-D-glucoside, a tetracyclic diterpenoid, a bridged compound and a steviol glycoside. It is functionally related to a steviol. Rubusoside is a natural product found in Rubus chingii var. suavissimus with data available. A steviol glycoside that is steviol in which both the carboxy group and the tertiary allylic hydroxy group have been converted to their corresponding beta-D-glucosides. A precious bioactive natural sweetener which mainly exists the in Chinese sweet tea plant, Rubus suavissimus. [Chemical] Source; leaves of Stevia rebaudiana Morita and Stevia rebaudiana Bertoni Rubusoside is a natural sweetener and solubilizer with excellent anti-angiogenic and anti-allergic properties. Rubusoside is a diterpene glycoside that is also a sweetener and solubilizer with anti-angiogenic, anti-cancer, anti-obesity, anti-allergic and anti-asthmatic effects. Rubusoside attenuates airway hyperresponsiveness and reduces inflammatory cells in bronchoalveolar lavage fluid (BALF), reducing OVA (HY-W250978)-induced airway inflammation. Rubusoside also prevents palmitic acid-induced lipotoxicity in pancreatic INS-1 cells, reduces the transport of human glucose transporters GLUT-1 and fructose GLUT-5, and inhibits NF-κB and α-amylase (α-amylase)[1][2][3][4]. Rubusoside is a natural sweetener and solubilizer with excellent anti-angiogenic and anti-allergic properties.
Uridine-diphosphate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Steviolbioside(1-)
A monocarboxylic acid anion resulting from the deprotonation of the carboxy group of steviolbioside. The major species at pH 7.3.