Rubusoside (BioDeep_00000230527)
PANOMIX_OTCML-2023 natural product
代谢物信息卡片
化学式: C32H50O13 (642.3251250000001)
中文名称: 甜叶悬钩子苷, 甜茶苷
谱图信息:
最多检出来源 Viridiplantae(plant) 0.08%
分子结构信息
SMILES: C(C1O)(O)C(C(OC(OC(C6)(C2)C(=C)CC(C3)2C(C6)([H])C(C4)(C(C(C)(C(=O)OC(O5)C(C(C(C(CO)5)O)O)O)CC4)([H])C3)C)1)CO)O
InChI: InChI=1S/C32H50O13/c1-15-11-31-9-5-18-29(2,7-4-8-30(18,3)28(41)44-26-24(39)22(37)20(35)16(12-33)42-26)19(31)6-10-32(15,14-31)45-27-25(40)23(38)21(36)17(13-34)43-27/h16-27,33-40H,1,4-14H2,2-3H3/t16-,17-,18+,19+,20-,21-,22+,23+,24-,25-,26+,27+,29-,30-,31-,32+/m1/s1
描述信息
Rubusoside is a steviol glycoside that is steviol in which both the carboxy group and the tertiary allylic hydroxy group have been converted to their corresponding beta-D-glucosides. A precious bioactive natural sweetener which mainly exists the in Chinese sweet tea plant, Rubus suavissimus. It has a role as a sweetening agent and a plant metabolite. It is a beta-D-glucoside, a tetracyclic diterpenoid, a bridged compound and a steviol glycoside. It is functionally related to a steviol.
Rubusoside is a natural product found in Rubus chingii var. suavissimus with data available.
A steviol glycoside that is steviol in which both the carboxy group and the tertiary allylic hydroxy group have been converted to their corresponding beta-D-glucosides. A precious bioactive natural sweetener which mainly exists the in Chinese sweet tea plant, Rubus suavissimus.
[Chemical] Source; leaves of Stevia rebaudiana Morita and Stevia rebaudiana Bertoni
Rubusoside is a natural sweetener and solubilizer with excellent anti-angiogenic and anti-allergic properties.
Rubusoside is a diterpene glycoside that is also a sweetener and solubilizer with anti-angiogenic, anti-cancer, anti-obesity, anti-allergic and anti-asthmatic effects. Rubusoside attenuates airway hyperresponsiveness and reduces inflammatory cells in bronchoalveolar lavage fluid (BALF), reducing OVA (HY-W250978)-induced airway inflammation. Rubusoside also prevents palmitic acid-induced lipotoxicity in pancreatic INS-1 cells, reduces the transport of human glucose transporters GLUT-1 and fructose GLUT-5, and inhibits NF-κB and α-amylase (α-amylase)[1][2][3][4].
Rubusoside is a natural sweetener and solubilizer with excellent anti-angiogenic and anti-allergic properties.
同义名列表
11 个代谢物同义名
[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1R,4S,5R,9S,10R,13S)-5,9-dimethyl-14-methylidene-13-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetracyclo[11.2.1.01,10.04,9]hexadecane-5-carboxylate; 1-O-[13alpha-(beta-D-glucopyranosyloxy)-18-oxo-5beta,8alpha,9beta,10alpha-kaur-16-en-18-yl]-beta-D-glucopyranose; 1-O-[(8alpha,9beta,10alpha,13alpha)-13-(beta-D-glucopyranosyloxy)-18-oxokaur-16-en-18-yl]-beta-D-glucopyranose; KAUR-16-EN-18-OIC ACID, 13-(.BETA.-D-GLUCOPYRANOSYLOXY)-, .BETA.-D-GLUCOPYRANOSYL ESTER, (4.ALPHA.)-; 1-o-[(5|A,9|A,10|A,13|A)-13-(|A-d-glucopyranosyloxy)-18-oxokaur-16-en-18-yl]-|A-d-glucopyranose; Kaur-16-en-18-oic acid, 13-(beta-D-glucopyranosyloxy)-, beta-D-glucopyranosyl ester, (4alpha)-; (4alpha)-13-(beta-D-glucopyranosyloxy)kaur-16-en-18-oic acid beta-D-glucopyranosyl ester; RUBUSOSIDE [INCI]; UNII-TCV5K3M3GX; Rubusoside; TCV5K3M3GX
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:145021
- PubChem: 102004928
- PubChem: 24721373
- PubChem: 45358147
- Metlin: METLIN85002
- ChEMBL: CHEMBL499256
- MeSH: rubusoside
- ChemIDplus: 0064849394
- chemspider: 23334893
- CAS: 64849-39-4
- MoNA: FU000303
- MoNA: FU000302
- MoNA: FU000301
- medchemexpress: HY-N0668
- MetaboLights: MTBLC145021
- LOTUS: LTS0030786
- LOTUS: LTS0155970
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
14 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(14)
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
19-O-β-glucopyranosyl-steviol + UDP-α-D-glucose ⟶ H+ + UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviol ⟶ H+ + UDP + steviolmonoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
27 个相关的物种来源信息
- 2759 - Eukaryota: LTS0030786
- 2759 - Eukaryota: LTS0155970
- 3398 - Magnoliopsida: LTS0030786
- 3398 - Magnoliopsida: LTS0155970
- 33090 - Plants: -
- 28511 - Pogostemon cablin (Blanco) Benth.: -
- 3745 - Rosaceae: LTS0030786
- 3745 - Rosaceae: LTS0155970
- 23216 - Rubus: LTS0030786
- 23216 - Rubus: LTS0155970
- 57936 - Rubus chamaemorus: -
- 714495 - Rubus chingii: 10.1271/BBB1961.45.2165
- 714495 - Rubus chingii: LTS0030786
- 714495 - Rubus chingii: LTS0155970
- 2066563 - Rubus chingii var. suavissimus: 10.1016/0031-9422(92)83105-8
- 2066563 - Rubus chingii var. suavissimus: 10.1201/9781351074940
- 2066563 - Rubus chingii var. suavissimus: 10.1248/CPB.35.3021
- 2066563 - Rubus chingii var. suavissimus: 10.1248/CPB.38.1743
- 2066563 - Rubus chingii var. suavissimus: LTS0030786
- 2066563 - Rubus chingii var. suavissimus: LTS0155970
- 35493 - Streptophyta: LTS0030786
- 35493 - Streptophyta: LTS0155970
- 58023 - Tracheophyta: LTS0030786
- 58023 - Tracheophyta: LTS0155970
- 33090 - Viridiplantae: LTS0030786
- 33090 - Viridiplantae: LTS0155970
- 33090 - 腊莲绣球: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Yameng Xu, Xinglong Wang, Chenyang Zhang, Xuan Zhou, Xianhao Xu, Luyao Han, Xueqin Lv, Yanfeng Liu, Song Liu, Jianghua Li, Guocheng Du, Jian Chen, Rodrigo Ledesma-Amaro, Long Liu. De novo biosynthesis of rubusoside and rebaudiosides in engineered yeasts.
Nature communications.
2022 06; 13(1):3040. doi:
10.1038/s41467-022-30826-2
. [PMID: 35650215] - Jin-A Ko, So-Yeon Kim, Hye-Soo Ahn, Jae-Gyune Go, Young-Bae Ryu, Woo Song Lee, Young-Jung Wee, Jun-Seong Park, Doman Kim, Young-Min Kim. Characterization of a lactic acid bacterium-derived β-glucosidase for the production of rubusoside from stevioside.
Enzyme and microbial technology.
2022 Jan; 153(?):109939. doi:
10.1016/j.enzmictec.2021.109939
. [PMID: 34798448] - Yaping Mao, Zhuo Chen, Yuhong Ren, Yuwei Sun, Yong Wang. Whole-Cell Biocatalyst for Rubusoside Production in Saccharomyces cerevisiae.
Journal of agricultural and food chemistry.
2021 Nov; 69(44):13155-13163. doi:
10.1021/acs.jafc.1c04873
. [PMID: 34699718] - Ling Zhao, Yao Wang, Zhenlin Li, Xiaonan Wang, Yijun Chen, Xuri Wu. Enzymatic Monoglucosylation of Rubusoside and the Structure-Sweetness/Taste Relationship of Monoglucosyl Derivatives.
Journal of agricultural and food chemistry.
2020 Aug; 68(32):8702-8709. doi:
10.1021/acs.jafc.0c03236
. [PMID: 32686405] - Chunru Guan, Faai Che, Huoxiang Zhou, Yiwei Li, Yaru Li, Jinpu Chu. Effect of Rubusoside, a Natural Sucrose Substitute, on Streptococcus mutans Biofilm Cariogenic Potential and Virulence Gene Expression In Vitro.
Applied and environmental microbiology.
2020 08; 86(16):. doi:
10.1128/aem.01012-20
. [PMID: 32503907] - Rafał Typek, Andrzej L Dawidowicz, Katarzyna Bernacik. Aqueous and alcoholic adducts of steviol and steviol glycosides in food products containing stevia.
Food chemistry.
2020 Jul; 317(?):126359. doi:
10.1016/j.foodchem.2020.126359
. [PMID: 32097820] - Chengqiang Wang, Jia Tang, Bo Qian, Zhen Zeng, Yang Gao, Jia-Le Song. Rubusoside alleviates the ovalbumin-induced mice allergic asthma by modulating the NF-κB activation.
Journal of food biochemistry.
2020 05; 44(5):e13187. doi:
10.1111/jfbc.13187
. [PMID: 32185800] - Li Li, Manjing Jiang, Yaohua Li, Jian Su, Li Li, Xiaosheng Qu, Lanlan Fan. 1H-NMR Metabolomics Analysis of the Effect of Rubusoside on Serum Metabolites of Golden Hamsters on a High-Fat Diet.
Molecules (Basel, Switzerland).
2020 Mar; 25(6):. doi:
10.3390/molecules25061274
. [PMID: 32168894] - Jianzhong Chen, Sachin K Khiste, Xiaomei Fu, Kartik R Roy, Yixuan Dong, Jian Zhang, Mei Liu, Yong-Yu Liu, Zhijun Liu. Rubusoside-assisted solubilization of poorly soluble C6-Ceramide for a pilot pharmacokinetic study.
Prostaglandins & other lipid mediators.
2020 02; 146(?):106402. doi:
10.1016/j.prostaglandins.2019.106402
. [PMID: 31841664] - Qing Lan, Tingting Tang, Yu Yin, XiaoYi Qu, Zilong Wang, Hao Pang, Ribo Huang, Liqin Du. Highly specific sophorose β-glucosidase from Sphingomonas elodea ATCC 31461 for the efficient conversion of stevioside to rubusoside.
Food chemistry.
2019 Oct; 295(?):563-568. doi:
10.1016/j.foodchem.2019.05.164
. [PMID: 31174796] - Hua Zheng, Jinxia Wu, Hong Huang, Chunmei Meng, Weidong Li, Tianli Wei, Zhiheng Su. Metabolomics analysis of the protective effect of rubusoside on palmitic acid-induced lipotoxicity in INS-1 cells using UPLC-Q/TOF MS.
Molecular omics.
2019 06; 15(3):222-232. doi:
10.1039/c9mo00029a
. [PMID: 31069354] - Yuwei Sun, Zhuo Chen, Jianxu Li, Jianhua Li, Huajun Lv, Jingya Yang, Weiwei Li, Dingan Xie, Zhiqiang Xiong, Peng Zhang, Yong Wang. Diterpenoid UDP-Glycosyltransferases from Chinese Sweet Tea and Ashitaba Complete the Biosynthesis of Rubusoside.
Molecular plant.
2018 10; 11(10):1308-1311. doi:
10.1016/j.molp.2018.05.010
. [PMID: 29885474] - Jinpu Chu, Tieting Zhang, Kexin He. Cariogenicity features of Streptococcus mutans in presence of rubusoside.
BMC oral health.
2016 May; 16(1):54. doi:
10.1186/s12903-016-0212-1
. [PMID: 27169524] - Alayna M George Thompson, Cristina V Iancu, Thi Thanh Hanh Nguyen, Doman Kim, Jun-yong Choe. Inhibition of human GLUT1 and GLUT5 by plant carbohydrate products; insights into transport specificity.
Scientific reports.
2015 Aug; 5(?):12804. doi:
10.1038/srep12804
. [PMID: 26306809] - Thi Thanh Hanh Nguyen, Seung-Jin Jung, Hee-Kyoung Kang, Young-Min Kim, Young-Hwan Moon, Misook Kim, Doman Kim. Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide.
Enzyme and microbial technology.
2014 Oct; 64-65(?):38-43. doi:
10.1016/j.enzmictec.2014.07.001
. [PMID: 25152415] - Mohamed A Ibrahim, Douglas L Rodenburg, Kamilla Alves, Frank R Fronczek, James D McChesney, Chongming Wu, Brian J Nettles, Sylesh K Venkataraman, Frank Jaksch. Minor diterpene glycosides from the leaves of Stevia rebaudiana.
Journal of natural products.
2014 May; 77(5):1231-5. doi:
10.1021/np4009656
. [PMID: 24758242] - Caroline Well, Oliver Frank, Thomas Hofmann. Quantitation of sweet steviol glycosides by means of a HILIC-MS/MS-SIDA approach.
Journal of agricultural and food chemistry.
2013 Nov; 61(47):11312-20. doi:
10.1021/jf404018g
. [PMID: 24206531] - Venkata Sai Prakash Chaturvedula, Mani Upreti, Indra Prakash. Diterpene glycosides from Stevia rebaudiana.
Molecules (Basel, Switzerland).
2011 Apr; 16(5):3552-62. doi:
10.3390/molecules16053552
. [PMID: 21527882] - Guixin Chou, Shun-Jun Xu, Dong Liu, Gar Yee Koh, Jian Zhang, Zhijun Liu. Quantitative and fingerprint analyses of Chinese sweet tea plant ( Rubus suavissimus S. Lee).
Journal of agricultural and food chemistry.
2009 Feb; 57(3):1076-83. doi:
10.1021/jf8029397
. [PMID: 19138116] - Sheng-Gao Yin, Jun-Ling Liu, Li-Li Liu, Fan-Fan Liu, Ning Xin. [Study on quality control of Rubus suavissimus].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2008 Nov; 31(11):1734-7. doi:
"
. [PMID: 19260294] - C M Compadre, R A Hussain, N P Nanayakkara, J M Pezzuto, A D Kinghorn. Mass spectral analysis of some derivatives and in vitro metabolites of steviol, the aglycone of the natural sweeteners, stevioside, rebaudioside A, and rubusoside.
Biomedical & environmental mass spectrometry.
1988 Feb; 15(4):211-22. doi:
10.1002/bms.1200150405
. [PMID: 3370361] - . .
.
. doi:
. [PMID: 15610349]