Reaction Process: PlantCyc:MUSKMELON_PWY-83

monolignol glucosides biosynthesis related metabolites

find 11 related metabolites which is associated with chemical reaction(pathway) monolignol glucosides biosynthesis

UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin

Coniferaldehyde

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enal

C10H10O3 (178.062991)


Coniferaldehyde (CAS: 458-36-6), also known as 4-hydroxy-3-methoxycinnamaldehyde or ferulaldehyde, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferaldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, coniferaldehyde is found, on average, in the highest concentration within sherries. Coniferaldehyde has also been detected, but not quantified in, several different foods, such as highbush blueberries, lima beans, Chinese cabbages, loquats, and greenthread tea. This could make coniferaldehyde a potential biomarker for the consumption of these foods. BioTransformer predicts that coniferaldehyde is a product of caffeic aldehyde metabolism via a catechol-O-methylation-pattern2 reaction catalyzed by the enzyme catechol O-methyltransferase (PMID: 30612223). Coniferyl aldehyde, also known as 4-hydroxy-3-methoxycinnamaldehyde or 4-hm-ca, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferyl aldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Coniferyl aldehyde can be found in a number of food items such as pear, common walnut, kelp, and citrus, which makes coniferyl aldehyde a potential biomarker for the consumption of these food products. Coniferyl aldehyde is a low molecular weight phenolic compound susceptible to be extracted from cork stoppers into wine . Coniferyl aldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a phenylpropanoid and a member of guaiacols. It is functionally related to an (E)-cinnamaldehyde. 4-Hydroxy-3-methoxycinnamaldehyde is a natural product found in Pandanus utilis, Microtropis japonica, and other organisms with data available. A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. Acquisition and generation of the data is financially supported in part by CREST/JST. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells Coniferaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=458-36-6 (retrieved 2024-09-04) (CAS RN: 458-36-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Syringin

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-(4-((E)-3-hydroxyprop-1-en-1-yl)-2,6-dimethoxyphenoxy)tetrahydro-2H-pyran-3,4,5-triol

C17H24O9 (372.14202539999997)


Syringin is a monosaccharide derivative that is trans-sinapyl alcohol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. It has a role as a hepatoprotective agent and a plant metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a primary alcohol and a dimethoxybenzene. It is functionally related to a trans-sinapyl alcohol. Syringin is a natural product found in Salacia chinensis, Codonopsis lanceolata, and other organisms with data available. See also: Codonopsis pilosula root (part of). A monosaccharide derivative that is trans-sinapyl alcohol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2]. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2].

   

Sinapaldehyde

2-Propenal, 3-(4-hydroxy-3,5-dimethoxyphenyl)-, (2E)-

C11H12O4 (208.0735552)


(E)-sinapaldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and methoxy groups at positions 3 and 5. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a dimethoxybenzene and a member of phenols. It is functionally related to an (E)-cinnamaldehyde. Sinapaldehyde is a natural product found in Stereospermum colais, Aralia bipinnata, and other organisms with data available. A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and methoxy groups at positions 3 and 5. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Sinapaldehyde, also known as (E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-2-propenal or (E)-sinapoyl aldehyde, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Sinapaldehyde is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sinapaldehyde can be synthesized from cinnamaldehyde. Sinapaldehyde can also be synthesized into 4-acetoxy-3,5-dimethoxy-trans-cinnamaldehyde. Sinapaldehyde can be found in a number of food items such as angelica, saskatoon berry, rubus (blackberry, raspberry), and lemon verbena, which makes sinapaldehyde a potential biomarker for the consumption of these food products. In Arabidopsis thaliana, this compound is part of the lignin biosynthesis pathway. The enzyme dihydroflavonol 4-reductase uses sinapaldehyde and NADPH to produce sinapyl alcohol and NADP+ . Annotation level-2 Sinapaldehyde exhibits moderate antibacterial against Methicillin resistant S. aureus (MRSA) and E. coli with MIC values of 128 and 128 μg/mL[1]. Sinapaldehyde exhibits moderate antibacterial against Methicillin resistant S. aureus (MRSA) and E. coli with MIC values of 128 and 128 μg/mL[1].

   

Sinapyl alcohol

4-[(1E)-3-hydroxyprop-1-en-1-yl]-2,6-dimethoxyphenol

C11H14O4 (210.0892044)


Sinapyl alcohol is an organic compound derived from cinnamic acid. This phytochemical is one of the monolignols. It is biosynthetized via the phenylpropanoid biochemical pathway, its immediate precursor being sinapaldehyde. Sinapyl alcohol is a precursor to lignin or lignans. It is also a biosynthetic precursor to various stilbenes and coumarins.[From Wiki].

   

Dihydroconiferyl alcohol

3-(4-hydroxy-3-methoxyphenyl)-propan-1-ol

C10H14O3 (182.0942894)


Dihydroconiferyl alcohol, also known as 3-(4-guaiacyl)propanol or 3-(4-hydroxy-3-methoxyphenyl)-propan-1-ol, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Dihydroconiferyl alcohol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Dihydroconiferyl alcohol can be found in lettuce and romaine lettuce, which makes dihydroconiferyl alcohol a potential biomarker for the consumption of these food products. Dihydroconiferyl alcohol is a cell division factor that can be found in pring sap of Acer pseudoplatanus L. Dihydroconiferyl alcohol can stimulate growth of soybean callus[1].

   

Hydrogen Ion

Hydrogen cation

H+ (1.0078246)


Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])

   

coniferaldehyde glucoside

coniferaldehyde glucoside

C16H20O8 (340.115812)


   

Sinapaldehyde glucoside

(E)-3-[3,5-dimethoxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]prop-2-enal

C17H22O9 (370.1263762)


(E)-sinapaldehyde 4-O-beta-D-glucopyranoside is a beta-D-glucoside resulting from the formal condensation of the phenolic hydroxy group of (E)-sinapaldehyde with beta-D-glucose. It has a role as a plant metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a dimethoxybenzene and a member of cinnamaldehydes. It is functionally related to an (E)-sinapaldehyde. Sinapaldehyde glucoside is a natural compound belonging to the phenolic glucoside class. It is formed by the condensation of sinapaldehyde, a type of phenolic aldehyde, with a glucose molecule through a glycosidic bond. This compound is commonly found in plants, particularly in the seeds of Brassica species, which include crops like mustard and rapeseed. Chemically, sinapaldehyde glucoside is characterized by the presence of a sinapaldehyde moiety, which consists of a benzene ring with hydroxyl groups at the para and meta positions, and an aldehyde group at the ortho position relative to one of the hydroxyl groups. The glucose moiety is attached to the aldehyde group of sinapaldehyde via a beta-glycosidic linkage. In terms of its properties, sinapaldehyde glucoside is typically a solid or crystalline substance with a specific melting point. It is soluble in water and polar organic solvents, reflecting its hydrophilic nature due to the presence of the glucose moiety. The compound may exhibit various biological activities, including antioxidant, anti-inflammatory, and antimicrobial effects, which are attributed to the phenolic groups present in the sinapaldehyde moiety. Sinapaldehyde glucoside has been studied for its potential health benefits and is considered a bioactive compound in the context of dietary phytochemicals. Its presence in plant-based foods contributes to the overall health-promoting effects associated with the consumption of Brassica vegetables and related products. (2E)-3-[4-(β-D-Glucopyranosyloxy)-3,5-dimethoxyphenyl]-2-propenal. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=154461-65-1 (retrieved 2024-07-12) (CAS RN: 154461-65-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Dihydroconiferin

2-(hydroxymethyl)-6-[4-(3-hydroxypropyl)-2-methoxyphenoxy]oxane-3,4,5-triol

C16H24O8 (344.1471104)


   

Uridine-diphosphate

Uridine-diphosphate

C9H11N2O12P2-3 (400.9787246)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS