Reaction Process: PathBank:SMP0120922
LPS and Citrate Signaling and Inflammation related metabolites
find 10 related metabolites which is associated with chemical reaction(pathway) LPS and Citrate Signaling and Inflammation
2-Oxobutanedioate + Acetyl Coenzyme A ⟶ Citrate
Flavin adenine dinucleotide
FAD is a flavin adenine dinucleotide in which the substituent at position 10 of the flavin nucleus is a 5-adenosyldiphosphoribityl group. It has a role as a human metabolite, an Escherichia coli metabolite, a mouse metabolite, a prosthetic group and a cofactor. It is a vitamin B2 and a flavin adenine dinucleotide. It is a conjugate acid of a FAD(3-). A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) Flavin adenine dinucleotide is approved for use in Japan under the trade name Adeflavin as an ophthalmic treatment for vitamin B2 deficiency. Flavin adenine dinucleotide is a natural product found in Bacillus subtilis, Eremothecium ashbyi, and other organisms with data available. FAD is a metabolite found in or produced by Saccharomyces cerevisiae. A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) Flavin adenine dinucleotide (FAD) is a redox-active coenzyme associated with various proteins, which is involved with several enzymatic reactions in metabolism. FAD, also known as adeflavin or flamitajin b, belongs to the class of organic compounds known as flavin nucleotides. These are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions. FAD is a drug which is used to treat eye diseases caused by vitamin b2 deficiency, such as keratitis and blepharitis. FAD exists in all living species, ranging from bacteria to humans. In humans, FAD is involved in the metabolic disorder called the medium chain acyl-coa dehydrogenase deficiency (mcad) pathway. Outside of the human body, FAD has been detected, but not quantified in several different foods, such as other bread, passion fruits, asparagus, kelps, and green bell peppers. It is a flavoprotein in which the substituent at position 10 of the flavin nucleus is a 5-adenosyldiphosphoribityl group. A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) [HMDB]. FAD is found in many foods, some of which are common sage, kiwi, spearmint, and ceylon cinnamon. A flavin adenine dinucleotide in which the substituent at position 10 of the flavin nucleus is a 5-adenosyldiphosphoribityl group. FAD. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=146-14-5 (retrieved 2024-07-01) (CAS RN: 146-14-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Flavin adenine dinucleotide (FAD) is a redox cofactor, more specifically a prosthetic group of a protein, involved in several important enzymatic reactions in metabolism.
Malonyl-CoA
Malonyl-CoA belongs to the class of organic compounds known as acyl-CoAs. These are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, malonyl-CoA is considered to be a fatty ester lipid molecule. Malonyl-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Within humans, malonyl-CoA participates in a number of enzymatic reactions. In particular, malonyl-CoA can be biosynthesized from acetyl-CoA; which is mediated by the enzyme acetyl-CoA carboxylase 1. In addition, malonyl-CoA can be converted into malonic acid and coenzyme A; which is catalyzed by the enzyme fatty acid synthase. Outside of the human body, malonyl-CoA has been detected, but not quantified in, several different foods, such as rapes, mamey sapotes, jews ears, pepper (C. chinense), and Alaska wild rhubarbs. This could make malonyl-CoA a potential biomarker for the consumption of these foods. Malonyl-CoA is a coenzyme A derivative that plays a key role in fatty acid synthesis in the cytoplasmic and microsomal systems. Malonyl-coa, also known as malonyl coenzyme a or coenzyme a, s-(hydrogen propanedioate), is a member of the class of compounds known as acyl coas. Acyl coas are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, malonyl-coa is considered to be a fatty ester lipid molecule. Malonyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Malonyl-coa can be found in a number of food items such as root vegetables, sourdock, ceylon cinnamon, and buffalo currant, which makes malonyl-coa a potential biomarker for the consumption of these food products. Malonyl-coa exists in E.coli (prokaryote) and yeast (eukaryote).
Acetyl-CoA
C23H38N7O17P3S (809.1257688000001)
The main function of coenzyme A is to carry acyl groups (such as the acetyl group) or thioesters. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. (wikipedia). acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent. The main function of coenzyme A is to carry acyl groups (such as the acetyl group) or thioesters. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. (wikipedia)
Pyruvic acid
Pyruvic acid, also known as 2-oxopropanoic acid or alpha-ketopropionic acid, belongs to alpha-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. Thus, pyruvic acid is considered to be a fatty acid lipid molecule. Pyruvic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Pyruvic acid can be synthesized from propionic acid. Pyruvic acid is also a parent compound for other transformation products, including but not limited to, 4-hydroxy-3-iodophenylpyruvate, 3-acylpyruvic acid, and methyl pyruvate. Pyruvic acid can be found in a number of food items such as kumquat, groundcherry, coconut, and prunus (cherry, plum), which makes pyruvic acid a potential biomarker for the consumption of these food products. Pyruvic acid can be found primarily in most biofluids, including sweat, blood, urine, and feces, as well as throughout most human tissues. Pyruvic acid exists in all living species, ranging from bacteria to humans. In humans, pyruvic acid is involved in several metabolic pathways, some of which include glycogenosis, type IB, glycolysis, urea cycle, and gluconeogenesis. Pyruvic acid is also involved in several metabolic disorders, some of which include non ketotic hyperglycinemia, pyruvate dehydrogenase complex deficiency, fructose-1,6-diphosphatase deficiency, and 4-hydroxybutyric aciduria/succinic semialdehyde dehydrogenase deficiency. Moreover, pyruvic acid is found to be associated with anoxia, schizophrenia, fumarase deficiency, and meningitis. Pyruvic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Pyruvic acid is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. It can also be used to construct the amino acid alanine and can be converted into ethanol or lactic acid via fermentation . Those taking large doses of supplemental pyruvate—usually greater than 5 grams daily—have reported gastrointestinal symptoms, including abdominal discomfort and bloating, gas and diarrhea. One child receiving pyruvate intravenously for restrictive cardiomyopathy died (DrugBank). Pyruvate serves as a biological fuel by being converted to acetyl coenzyme A, which enters the tricarboxylic acid or Krebs cycle where it is metabolized to produce ATP aerobically. Energy can also be obtained anaerobically from pyruvate via its conversion to lactate. Pyruvate injections or perfusions increase contractile function of hearts when metabolizing glucose or fatty acids. This inotropic effect is striking in hearts stunned by ischemia/reperfusion. The inotropic effect of pyruvate requires intracoronary infusion. Among possible mechanisms for this effect are increased generation of ATP and an increase in ATP phosphorylation potential. Another is activation of pyruvate dehydrogenase, promoting its own oxidation by inhibiting pyruvate dehydrogenase kinase. Pyruvate dehydrogenase is inactivated in ischemia myocardium. Yet another is reduction of cytosolic inorganic phosphate concentration. Pyruvate, as an antioxidant, is known to scavenge such reactive oxygen species as hydrogen peroxide and lipid peroxides. Indirectly, supraphysiological levels of pyruvate may increase cellular reduced glutathione (T3DB). Pyruvic acid or pyruvate is a simple alpha-keto acid. It is a three-carbon molecule containing a carboxylic acid group and a ketone functional group. Pyruvate is the simplest alpha-keto acid and according to official nomenclature by IUPAC, it is called alpha-keto propanoic acid. Like other keto acids, pyruvic acid can tautomerize from its ketone form to its enol form, containing a double bond and an alcohol. Pyruvate is found in all living organisms ranging from bacteria to plants to humans. It is intermediate compound in the metabolism of carbohydrates, proteins, and fats. Pyruvate is a key intermediate in several metabolic pathways throughout the cell. In particular, pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. Pyruvic acid supplies energy to cells through the citric acid cycle (TCA or Krebs cycle) when oxygen is present (aerobic respiration), and alternatively ferments to produce lactate when oxygen is lacking (lactic acid). In glycolysis, phosphoenolpyruvate (PEP) is converted to pyruvate by pyruvate kinase. This reaction is strongly exergonic and irreversible. In gluconeogenesis, it takes two enzymes, pyruvate carboxylase and PEP carboxykinase, to catalyze the reverse transformation of pyruvate to PEP. Pyruvic acid is also a metabolite of Corynebacterium (PMID: 27872963). Pyruvic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=127-17-3 (retrieved 2024-07-01) (CAS RN: 127-17-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats. Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats.
NADP+
[C21H29N7O17P3]+ (744.0832754)
[Spectral] NADP+ (exact mass = 743.07545) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
FADH
C27H35N9O15P2 (787.1727780000001)
Fadh2, also known as 1,5-dihydro-fad or dihydroflavine-adenine dinucleotide, is a member of the class of compounds known as flavin nucleotides. Flavin nucleotides are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions. Fadh2 is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Fadh2 can be found in a number of food items such as soft-necked garlic, fruits, winter squash, and black cabbage, which makes fadh2 a potential biomarker for the consumption of these food products. Fadh2 exists in all living species, ranging from bacteria to humans. In humans, fadh2 is involved in several metabolic pathways, some of which include the oncogenic action of fumarate, the oncogenic action of 2-hydroxyglutarate, citric acid cycle, and congenital lactic acidosis. Fadh2 is also involved in several metabolic disorders, some of which include 2-ketoglutarate dehydrogenase complex deficiency, the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria, the oncogenic action of l-2-hydroxyglutarate in hydroxygluaricaciduria, and pyruvate dehydrogenase deficiency (E2). FADH is the reduced form of flavin adenine dinucleotide (FAD). FAD is synthesized from riboflavin and two molecules of ATP. Riboflavin is phosphorylated by ATP to give riboflavin 5-phosphate (FMN). FAD is then formed from FMN by the transfer of an AMP moiety from a second molecule of ATP. FADH is generated in each round of fatty acid oxidation, and the fatty acyl chain is shortened by two carbon atoms as a result of these reactions; because oxidation is on the beta carbon, this series of reactions is called the beta-oxidation pathway. In the citric acid cycle, FADH is involved in the harvesting of high-energy electrons from carbon fuels; the citric acid cycle itself neither generates a large amount of ATP nor includes oxygen as a reactant. Instead, the citric acid cycle removes electrons from acetyl CoA and uses these electrons to form FADH.
Citrate
D064449 - Sequestering Agents > D002614 - Chelating Agents > D065096 - Calcium Chelating Agents D006401 - Hematologic Agents > D000925 - Anticoagulants COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Oxalacetate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
ent-NADPH
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS