Reaction Process: BioCyc:META_PWY-7586

β-1,4-D-mannosyl-N-acetyl-D-glucosamine degradation related metabolites

find 6 related metabolites which is associated with chemical reaction(pathway) β-1,4-D-mannosyl-N-acetyl-D-glucosamine degradation

4-O-β-D-mannopyranosyl-N-acetyl-D-glucosamine + phosphate ⟶ α-D-mannose 1-phosphate + N-acetyl-D-glucosamine

N-Acetyl-D-glucosamine

N-[(3R,4R,5S,6R)-2,4,5-Trihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide

C8H15NO6 (221.089933)


N-Acetyl-D-Glucosamine (N-acetlyglucosamine) is a monosaccharide derivative of glucose. Chemically it is an amide between glucosamine and acetic acid. A single N-acetlyglucosamine moiety linked to serine or threonine residues on nuclear and cytoplasmic proteins -O-GlcNAc, is an ubiquitous post-translational protein modification. O-GlcNAc modified proteins are involved in sensing the nutrient status of the surrounding cellular environment and adjusting the activity of cellular proteins accordingly. O-GlcNAc regulates cellular responses to hormones such as insulin, initiates a protective response to stress, modulates a cells capacity to grow and divide, and regulates gene transcription. In humans, it exists in skin, cartilage and blood vessel as a component of hyaluronic acid, and bone tissue, cornea and aorta as a component of keratan sulfate. (PMID 16237703). Monomer of Chitinand is also in the exopolysaccharide from blue-green alga Cyanospira capsulata (CCD) N-Acetyl-D-Glucosamine (N-Acetyl-2-amino-2-deoxy-D-glucose) is a monosaccharide derivative of glucose.

   

Mannose 6-phosphate

{[(2R,3S,4S,5S,6R)-3,4,5,6-tetrahydroxyoxan-2-yl]methoxy}phosphonic acid

C6H13O9P (260.0297178)


Mannose 6-phosphate, also known as alpha-D-mannose-6-p or man-6-p, belongs to the class of organic compounds known as hexose phosphates. These are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. Mannose 6-phosphate exists in all eukaryotes, ranging from yeast to humans. Within humans, mannose 6-phosphate participates in a number of enzymatic reactions. In particular, mannose 6-phosphate can be converted into fructose 6-phosphate through its interaction with the enzyme mannose-6-phosphate isomerase. In addition, mannose 6-phosphate can be biosynthesized from D-mannose through the action of the enzyme hexokinase-1. Mannose 6-phosphate is a potent competitive inhibitor of pinocytosis of human platelet beta-glucuronidase and it is a necessary component of the recognition marker on the enzyme for pinocytosis by human fibroblasts as well (PMID 908752). In humans, mannose 6-phosphate is involved in fructose intolerance, hereditary. Mannose-6-phosphate is a potent competitive inhibitor of pinocytosis of human platelet beta-glucuronidase and it is a necessary component of the recognition marker on the enzyme for pinocytosis by human fibroblasts as well (PMID 908752). [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M008

   

4-O-beta-D-Mannopyranosyl-N-acetyl-D-glucosamine

4-O-beta-D-Mannopyranosyl-N-acetyl-D-glucosamine

C14H25NO11 (383.14275399999997)


   
   

beta-D-fructofuranose 6-phosphate(2-)

beta-D-fructofuranose 6-phosphate(2-)

C6H11O9P-2 (258.01406860000003)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

alpha-D-mannose 1-phosphate(2-)

alpha-D-mannose 1-phosphate(2-)

C6H11O9P-2 (258.01406860000003)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS