Reaction Process: BioCyc:META_PWY-6532

diphenylamine degradation related metabolites

find 7 related metabolites which is associated with chemical reaction(pathway) diphenylamine degradation

H+ + NADH + O2 + diphenylamine ⟶ NAD+ + aniline + catechol

Diphenylamine

Diphenylamine, reaction product with 2,2,4-trimethylpentene

C12H11N (169.0891446)


Diphenylamine is found in coriander. Diphenylamine is used for control of superficial scald in stored apples Diphenylamine is the organic compound with the formula (C6H5)2NH. It is a colourless solid, but samples are often yellow due to oxidized impurities. It is a weak base, with a KB of 10 14. With strong acids, it forms the water soluble salt CONFIDENCE standard compound; INTERNAL_ID 300; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9465; ORIGINAL_PRECURSOR_SCAN_NO 9462 CONFIDENCE standard compound; INTERNAL_ID 300; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9425; ORIGINAL_PRECURSOR_SCAN_NO 9420 CONFIDENCE standard compound; INTERNAL_ID 300; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9472; ORIGINAL_PRECURSOR_SCAN_NO 9471 CONFIDENCE standard compound; INTERNAL_ID 300; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9455; ORIGINAL_PRECURSOR_SCAN_NO 9451 CONFIDENCE standard compound; INTERNAL_ID 300; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9493; ORIGINAL_PRECURSOR_SCAN_NO 9490 CONFIDENCE standard compound; INTERNAL_ID 300; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9495; ORIGINAL_PRECURSOR_SCAN_NO 9492 It is used for control of superficial scald in stored apples CONFIDENCE standard compound; EAWAG_UCHEM_ID 3092 CONFIDENCE standard compound; INTERNAL_ID 8086 KEIO_ID D044

   

Aniline

Aniline sulfate (2:1), (14)C-labeled CPD

C6H7N (93.0578462)


Aniline is a weak base. Aromatic amines such as aniline are, in general, much weaker bases than aliphatic amines. Aniline reacts with strong acids to form anilinium (or phenylammonium) ion (C6H5-NH3+). The sulfate forms beautiful white plates. Although aniline is weakly basic, it precipitates zinc, aluminium, and ferric salts, and, on warming, expels ammonia from its salts. The weak basicity is due to a negative inductive effect as the lone pair on the nitrogen is partially delocalised into the pi system of the benzene ring.; Aniline is an organic chemical compound, specifically a primary aromatic amine. It consists of a benzene ring attached to an amino group. Aniline is oily and, although colorless, it can be slowly oxidized and resinified in air to form impurities which can give it a red-brown tint. Its boiling point is 184 degree centigrade and its melting point is -6 degree centegrade. It is a liquid at room temperature. Like most volatile amines, it possesses a somewhat unpleasant odour of rotten fish, and also has a burning aromatic taste; Aniline was first isolated from the destructive distillation of indigo in 1826 by Otto Unverdorben , who named it crystalline. In 1834, Friedrich Runge (Pogg. Ann., 1834, 31, p. 65; 32, p. 331) isolated from coal tar a substance that produced a beautiful blue colour on treatment with chloride of lime, which he named kyanol or cyanol. In 1841, C. J. Fritzsche showed that, by treating indigo with caustic potash, it yielded an oil, which he named aniline, from the specific name of one of the indigo-yielding plants, Indigofera anil, anil being derived from the Sanskrit n?la, dark-blue, and n?l?, the indigo plant. About the same time N. N. Zinin found that, on reducing nitrobenzene, a base was formed, which he named benzidam. August Wilhelm von Hofmann investigated these variously-prepared substances, and proved them to be identical (1855), and thenceforth they took their place as one body, under the name aniline or phenylamine.; Aniline, phenylamine or aminobenzene is an organic compound with the formula C6H7N. It is the simplest and one of the most important aromatic amines, being used as a precursor to more complex chemicals. Its main application is in the manufacture of polyurethane. Like most volatile amines, it possesses the somewhat unpleasant odour of rotten fish and also has a burning aromatic taste; it is a highly-acrid poison. It ignites readily, burning with a smoky flame.; Like phenols, aniline derivatives are highly susceptible to electrophilic substitution reactions. For example, reaction of aniline with sulfuric acid at 180 °C produces sulfanilic acid, NH2C6H4SO3H, which can be converted to sulfanilamide. Sulfanilamide is one of the sulfa drugs that were widely used as antibacterials in the early 20th century.; The great commercial value of aniline was due to the readiness with which it yields, directly or indirectly, dyestuffs. The discovery of mauve in 1856 by William Henry Perkin was the first of a series of an enormous range of dyestuffs, such as fuchsine, safranine and induline. In addition to its use as a precursor to dyestuffs, it is a starting-product for the manufacture of many drugs, such as paracetamol (acetaminophen, Tylenol).; it is a highly acrid poison. It ignites readily, burning with a large smoky flame. Aniline reacts with strong acids to form salts containing the anilinium (or phenylammonium) ion (C6H5-NH3+), and reacts with acyl halides (such as acetyl chloride (ethanoyl chloride), CH3COCl) to form amides. The amides formed from aniline are sometimes called anilides, for example CH3-CO-NH-C6H5 is acetanilide, for which the modern name is N-phenyl ethanamide. Like phenols, aniline derivatives are highly reactive in electrophilic substitution reactions. For example, sulfonation of aniline produces sulfanilic acid, which can be converted to sulfanilamide. Sulfanilamide is one of the sulfa drugs which were widely used as antibacterial in the early 20th cent... Aniline is an organic chemical compound, specifically a primary aromatic amine. It consists of a benzene ring attached to an amino group. Aniline is oily and, although colorless, it can be slowly oxidized and resinified in air to form impurities which can give it a red-brown tint. Its boiling point is 184 degree centigrade and its melting point is -6 degree centegrade. It is a liquid at room temperature. Like most volatile amines, it possesses a somewhat unpleasant odour of rotten fish, and also has a burning aromatic taste; it is a highly acrid poison. It ignites readily, burning with a large smoky flame. Aniline reacts with strong acids to form salts containing the anilinium (or phenylammonium) ion (C6H5-NH3+), and reacts with acyl halides (such as acetyl chloride (ethanoyl chloride), CH3COCl) to form amides. The amides formed from aniline are sometimes called anilides, for example CH3-CO-NH-C6H5 is acetanilide, for which the modern name is N-phenyl ethanamide. Like phenols, aniline derivatives are highly reactive in electrophilic substitution reactions. For example, sulfonation of aniline produces sulfanilic acid, which can be converted to sulfanilamide. Sulfanilamide is one of the sulfa drugs which were widely used as antibacterial in the early 20th century. Aniline was first isolated from the destructive distillation of indigo in 1826 by Otto Unverdorben. In 1834, Friedrich Runge isolated from coal tar a substance which produced a beautiful blue color on treatment with chloride of lime; this he named kyanol or cyanol. In 1841, C. J. Fritzsche showed that by treating indigo with caustic potash it yielded an oil, which he named aniline, from the specific name of one of the indigo-yielding plants, Indigofera anil, anil being derived from the Sanskrit, dark-blue. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 8060 D009676 - Noxae > D002273 - Carcinogens KEIO_ID A054 KEIO_ID A162

   

Catechol

InChI=1\C6H6O2\c7-5-3-1-2-4-6(5)8\h1-4,7-8

C6H6O2 (110.0367776)


A benzenediol comprising of a benzene core carrying two hydroxy substituents ortho to each other. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Oxygen

Molecular oxygen

O2 (31.98983)


Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131) [HMDB]. Oxygen is found in many foods, some of which are soy bean, watermelon, sweet basil, and spinach. Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131). V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Hydrogen Ion

Hydrogen cation

H+ (1.0078246)


Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])

   

Nicotinamide adenine dinucleotide

Nicotinamide adenine dinucleotide

C21H26N7O14P2- (662.1012936000001)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

beta-NADH

beta-NADH

C21H27N7O14P2-2 (663.1091182000001)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS