Biological Pathway: Reactome:R-HSA-9710421

Defective pyroptosis related metabolites

find 8 related metabolites which is associated with the biological pathway Defective pyroptosis

this pathway object is a organism specific pathway, which is related to taxonomy Homo sapiens (human).

Pyroptosis is a form of lytic inflammatory programmed cell death that is mediated by the pore‑forming gasdermins (GSDMs) (Shi J et al. 2017) to stimulate immune responses through the release of pro‑inflammatory interleukin (IL)‑1β, IL‑18 (mainly in GSDMD-mediated pyroptosis) as well as danger signals such as adenosine triphosphate (ATP) or high mobility group protein B1 (HMGB1) (reviewed in Shi J et al. 2017; Man SM et al. 2017; Tang D et al. 2019; Lieberman J et al. 2019). Pyroptosis protects the host from microbial infection but can also lead to pathological inflammation if overactivated or dysregulated (reviewed in Orning P et al. 2019; Tang L et al. 2020). During infections, the excessive production of cytokines can lead to a cytokine storm, which is associated with acute respiratory distress syndrome (ARDS) and systemic inflammatory response syndrome (SIRS) (reviewed in Tisoncik JR et al. 2012; Karki R et al. 2020; Ragab D et al. 2020). Pyroptosis has a close but complicated relationship to tumorigenesis, affected by tissue type and genetic background. Pyroptosis can trigger potent antitumor immune responses or serve as an effector mechanism in antitumor immunity (Wang Q et al. 2020; Zhou Z et al. 2020; Zhang Z et al. 2020), while in other cases, as a type of proinflammatory death, pyroptosis can contribute to the formation of a microenvironment suitable for tumor cell growth (reviewed in Xia X et al. 2019; Jiang M et al. 2020; Zhang Z et al. 2021).

This Reactome module describes the defective GSDME function caused by cancer‑related GSDME mutations (Zhang Z et al. 2020). It also shows epigenetic inactivation of GSDME due to hypermethylation of the GSDME promoter region (Akino K et al. 2007; Kim MS et al. 2008a,b; Croes L et al. 2017, 2018; Ibrahim J et al. 2019). Aberrant promoter methylation is considered to be a hallmark of cancer (Ehrlich M et al. 2002; Dong Y et al. 2014; Lam K et al. 2016; Croes L et al. 2018). Treatment with the DNA methyltransferase inhibitor decitabine (5‑aza‑2'‑deoxycytidine or DAC) may elevate GSDME expression in certain cancer cells (Akino K et al. 2007; Fujikane T et al. 2009; Wang Y et al. 2017).

View the spectrum consensus network of the metabolites related with current biological pathway.

Decitabine

4-amino-1-[4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,3,5-triazin-2-one

C8H12N4O4 (228.0859)


Decitabine is indicated for treatment of patients with myelodysplastic syndrome (MDS). It is a chemical analogue of cytidine, a nucleoside present in DNA and RNA. Cells in the presence of Decitabine incorporate it into DNA during replication and RNA during transcription. The incorporation of Decitabine into DNA or RNA inhibits methyltransferase thereby causing demethylation in that sequence. This adversely affects the way that cell regulatory proteins are able to bind to the DNA/RNA substrate. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C471 - Enzyme Inhibitor > C2083 - DNA Methyltransferase Inhibitor C274 - Antineoplastic Agent > C132686 - Demethylating Agent D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Decitabine (NSC 127716) is an orally active deoxycytidine analogue antimetabolite and a DNA methyltransferase inhibitor. Decitabine incorporates into DNA in place of cytosine can covalently trap DNA methyltransferase to DNA causing irreversible inhibition of the enzyme. Decitabine induces cell G2/M arrest and cell apoptosis. Decitabine has potent anticancer activity[1][2].

   

Decitabine

Decitabine

C8H12N4O4 (228.0859)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C471 - Enzyme Inhibitor > C2083 - DNA Methyltransferase Inhibitor C274 - Antineoplastic Agent > C132686 - Demethylating Agent D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Decitabine (NSC 127716) is an orally active deoxycytidine analogue antimetabolite and a DNA methyltransferase inhibitor. Decitabine incorporates into DNA in place of cytosine can covalently trap DNA methyltransferase to DNA causing irreversible inhibition of the enzyme. Decitabine induces cell G2/M arrest and cell apoptosis. Decitabine has potent anticancer activity[1][2].

   

S-Adenosyl-L-methionine

S-Adenosyl-L-methionine

C15H23N6O5S+ (399.1451)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

5-S-[(3S)-3-azaniumyl-3-carboxylatopropyl]-5-thioadenosine

5-S-[(3S)-3-azaniumyl-3-carboxylatopropyl]-5-thioadenosine

C14H20N6O5S (384.1216)


   

Thymidine 5-triphosphate(4-)

Thymidine 5-triphosphate(4-)

C10H13N2O14P3-4 (477.958)


   

Deoxyadenosine-triphosphate

Deoxyadenosine-triphosphate

C10H12N5O12P3-4 (486.9695)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Deoxyguanosine-triphosphate

Deoxyguanosine-triphosphate

C10H12N5O13P3-4 (502.9644)