Biological Pathway: BioCyc:LEISH_PWY3IU-1025

trypanothione redox reactions related metabolites

find 11 related metabolites which is associated with the biological pathway trypanothione redox reactions

this pathway object is a organism specific pathway, which is related to taxonomy Leishmania major strain Friedlin.

View the spectrum consensus network of the metabolites related with current biological pathway.

Nicotinamide adenine dinucleotide phosphate

{[(2R,3R,4R,5R)-2-(6-amino-9H-purin-9-yl)-5-[({[({[(2R,3S,4R,5R)-5-(3-carbamoyl-1,4-dihydropyridin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C21H30N7O17P3 (745.0911)


NADPH is the reduced form of NADP+, and NADP+ is the oxidized form of NADPH. Nicotinamide adenine dinucleotide phosphate (NADP) is a coenzyme composed of ribosylnicotinamide 5-phosphate (NMN) coupled with a pyrophosphate linkage to 5-phosphate adenosine 2,5-bisphosphate. NADP serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). NADP is formed through the addition of a phosphate group to the 2 position of the adenosyl nucleotide through an ester linkage (Dorland, 27th ed). This extra phosphate is added by the enzyme NAD+ kinase and removed via NADP+ phosphatase. NADP is also known as TPN (triphosphopyridine nucleotide) and it is an important cofactor used in anabolic reactions in all forms of cellular life. Examples include the Calvin cycle, cholesterol synthesis, fatty acid elongation, and nucleic acid synthesis (Wikipedia). Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5-phosphate (NMN) coupled by pyrophosphate linkage to the 5-phosphate adenosine 2,5-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed.) [HMDB]. NADPH is found in many foods, some of which are american pokeweed, rice, ginseng, and ostrich fern. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

NADP

beta-Nicotinamide adenine dinucleotide phosphate oxidized form sodium salt hydrate

C21H28N7O17P3 (743.0755)


[Spectral] NADP+ (exact mass = 743.07545) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Trypanothione

(2S)-2-amino-4-{[(1R)-1-{[({3-[(4-{2-[(2R)-2-[(4S)-4-amino-4-carboxybutanamido]-3-sulfanylpropanamido]acetamido}butyl)amino]propyl}carbamoyl)methyl]carbamoyl}-2-sulfanylethyl]carbamoyl}butanoic acid

C27H49N9O10S2 (723.3044)


Leishmaniasis is a neglected disease caused by Leishmania, an intracellular protozoan parasite which possesses a unique thiol metabolism based on trypanothione. (PMID: 22928053) Trypanosomatids, the causative agents of several tropical diseases, rely on trypanothione as principal low molecular mass thiol, and their glutaredoxins readily react with the unique bis(glutathionyl) spermidine conjugate. (PMID: 22978520) Among the potential molecular target, Trypanothione reductase (TR) is considered an ideal enzyme since it is involved in the unique thiol-based metabolism observed in the Trypanosomatidae family and is a validated target for the search of antitrypanosomatidae drugs. (PMID: 23410156)

   

Trypanothione disulfide

(2S)-2-amino-4-{[(4R,23R)-23-{[(4S)-4-amino-4-carboxy-1-hydroxybutylidene]amino}-5,8,19,22-tetrahydroxy-1,2-dithia-6,9,13,18,21-pentaazacyclotetracosa-5,8,18,21-tetraen-4-yl]-C-hydroxycarbonimidoyl}butanoic acid

C27H47N9O10S2 (721.2887)


This compound belongs to the family of Cyclic Peptides. These are compounds containing a cyclic moiety bearing a peptide backbone

   

Hydrogen Ion

Hydrogen cation

H+ (1.0078)


Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])

   

NADP+

1-[(2R,3R,4S,5R)-5-[({[({[(2R,3R,4R,5R)-5-(6-amino-9H-purin-9-yl)-3-hydroxy-4-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-3,4-dihydroxyoxolan-2-yl]-3-carbamoyl-1lambda5-pyridin-1-ylium

C21H29N7O17P3+ (744.0833)


Nadp+, also known as nicotinamide adenine dinucleotide phosphate or nadp, is a member of the class of compounds known as (5->5)-dinucleotides (5->5)-dinucleotides are dinucleotides where the two bases are connected via a (5->5)-phosphodiester linkage. Nadp+ is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Nadp+ can be found in a number of food items such as small-leaf linden, redcurrant, root vegetables, and fenugreek, which makes nadp+ a potential biomarker for the consumption of these food products. Nadp+ can be found primarily in blood, as well as throughout all human tissues. Nadp+ exists in all eukaryotes, ranging from yeast to humans. In humans, nadp+ is involved in several metabolic pathways, some of which include folate malabsorption, hereditary, carprofen action pathway, valdecoxib action pathway, and glutathione metabolism. Nadp+ is also involved in several metabolic disorders, some of which include monoamine oxidase-a deficiency (MAO-A), apparent mineralocorticoid excess syndrome, hyperprolinemia type I, and hyperphenylalaninemia due to dhpr-deficiency. Moreover, nadp+ is found to be associated with pellagra. Nicotinamide adenine dinucleotide phosphate, abbreviated NADP+ or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as lipid and nucleic acid synthesis, which require NADPH as a reducing agent . COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

NADPH

ent-NADPH

C21H30N7O17P3 (745.0911)


The reduced form of NADP+; used in anabolic reactions, such as lipid and nucleic acid synthesis, which require NADPH as a reducing agent. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Nicotinamide adenine dinucleotide phosphate

NADP nicotinamide-adenine-dinucleotide phosphATE

C21H29N7O17P3+ (744.0833)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Hydrogen cation

Hydrogen cation

H+ (1.0078)


   
   

BIS(GAMMA-glutamyl-cysteinyl-glycinyl)spermidine

BIS(GAMMA-glutamyl-cysteinyl-glycinyl)spermidine

C27H49N9O10S2 (723.3044)