NCBI Taxonomy: 696236
Aethus (ncbi_taxid: 696236)
found 59 associated metabolites at genus taxonomy rank level.
Ancestor: Cydninae
Child Taxonomies: Aethus indicus, Aethus nigritus, Aethus hispidulus, Aethus philippinensis
2-Hexenal
(2E)-hexenal is a 2-hexenal in which the olefinic double bond has E configuration. It occurs naturally in a wide range of fruits, vegetables, and spices. It has a role as a flavouring agent, an antibacterial agent and a plant metabolite. 2-Hexenal is a natural product found in Lonicera japonica, Origanum sipyleum, and other organisms with data available. 2-Hexenal is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. 2-Hexenal is found in allspice. 2-Hexenal is used in perfumery and flavourings. 2-Hexenal belongs to the family of Medium-chain Aldehydes. These are An aldehyde with a chain length containing between 6 and 12 carbon atoms. 2-Hexenal (CAS: 505-57-7), also known as 2-hexenaldehyde or 3-propylacrolein, belongs to the class of organic compounds known as medium-chain aldehydes. These are aldehydes with a chain length containing between 6 and 12 carbon atoms. Thus, 2-hexenal is considered to be a fatty aldehyde lipid molecule. Outside of the human body, 2-hexenal is found, on average, in the highest concentration within a few different foods, such as corn, tea, and bilberries. 2-Hexenal has also been detected, but not quantified in, several different foods, such as common wheat, ginkgo nuts, spearmints, sunflowers, and watermelons. This could make 2-hexenal a potential biomarker for the consumption of these foods. (E)-2-Hexenal is found in allspice. It is used in perfumery and flavouring. (E)-2-Hexenal has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators Acquisition and generation of the data is financially supported in part by CREST/JST. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1]. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1].
N-Dodecane
N-Dodecane is found in black walnut. Dodecane is a liquid alkane hydrocarbon with the chemical formula CH3(CH2)10CH3. It is an oily liquid of the paraffin series and has 355 isomers. (Wikipedia). Dodecane is a volatile organic compound found in feces of patients with Clostridium difficile infection, and considered as a potential fecal biomarker of Clostridium difficile infection (PMID: 30986230). Dodecane is a liquid alkane hydrocarbon with the chemical formula CH3(CH2)10CH3. It is an oily liquid of the paraffin series and has 355 isomers. N-Dodecane is found in papaya, black walnut, and garden tomato (variety). D009676 - Noxae > D002273 - Carcinogens
Tridecane
Tridecane appears as an oily straw yellow clear liquid with a hydrocarbon odor. Flash point 190-196 °F. Specific gravity 0.76. Boiling point 456 °F. Repeated or prolonged skin contact may irritate or redden skin, progressing to dermatitis. Exposure to high concentrations of vapor may result in headache and stupor. Tridecane is a straight chain alkane containing 13 carbon atoms. It forms a component of the essential oils isolated from plants such as Abelmoschus esculentus. It has a role as a plant metabolite and a volatile oil component. Tridecane is a natural product found in Dryopteris assimilis, Thyanta perditor, and other organisms with data available. Tridecane is an alkane hydrocarbon with the chemical formula CH3(CH2)11CH3. Tridecane is found in allspice and it is also isolated from lime oil. It is a light, combustible colourless liquid that is used in the manufacture of paraffin products, the paper processing industry, in jet fuel research and in the rubber industry; furthermore, tridecane is used as a solvent and distillation chaser. n-tridecane is also one of the major chemicals secreted by some insects as a defense against predators. Tridecane has 802 constitutional isomers A straight chain alkane containing 13 carbon atoms. It forms a component of the essential oils isolated from plants such as Abelmoschus esculentus. Isolated from lime oil Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2]. Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2].
gamma-Butyrolactone
Gamma-butyrolactone (GBL), also known as 1,4-butanolide or 1,4-lactone, belongs to the class of organic compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. GBL can also be classified as a tetrahydrofuran substituted by an oxo group at position 2. Gamma-butyrolactone is soluble in ethanol and moderately miscible in water. Gamma-butyrolactone is a sweet, caramel, and creamy tasting compound. Gamma-butyrolactone exists in all living species, ranging from bacteria to plants to humans. It can be endogenously produced from gamma-aminobutyrate and is the precursor of gamma-hydroxybutyrate. Outside of the human body, gamma-butyrolactone has been detected, but not quantified in, several different foods, such as pepper (c. annuum), yellow bell peppers, orange bell peppers, soy beans, evergreen blackberries and a variety of wines (at a concentration of 5 ug/mL) (PMID: 15939164). This could make gamma-butyrolactone a potential biomarker for the consumption of these foods. Gamma-butyrolactone is rapidly converted into gamma-hydroxybutyrate by paraoxonase (lactonase) enzymes, found in the blood. Because it can serve as a prodrug for gamma-hydroxybutyrate (GHB), Gamma-butyrolactone is commonly used as a recreational CNS depressant with effects similar to those of barbiturates. Industrially gamma-butyrolactone is used as a common solvent for polymers and alcohols, a chemical intermediate, a raw material for pharmaceuticals, and as a paint stripper, superglue remover, and a stain remover. Present in morello cherry, melon, pineapple, blackberry, quince, strawberry jam, wine, soybeans, black tea, Bourbon vanilla, wheat bread, crispbread and other breads. Flavour ingredient [DFC]. gamma-Butyrolactone is found in many foods, some of which are yellow bell pepper, pepper (c. annuum), red bell pepper, and pulses. D012997 - Solvents
Pentadecane
Pentadecane, also known as ch3-[ch2]13-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, pentadecane is considered to be a hydrocarbon lipid molecule. Pentadecane is an alkane and waxy tasting compound and can be found in a number of food items such as dill, papaya, yellow bell pepper, and pepper (c. annuum), which makes pentadecane a potential biomarker for the consumption of these food products. Pentadecane can be found primarily in saliva. Pentadecane is a non-carcinogenic (not listed by IARC) potentially toxic compound. Pentadecane is an alkane hydrocarbon with the chemical formula C15H32 . Pentadecane belongs to the family of Acyclic Alkanes. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2
2-Octenyl acetate
2-Octenyl acetate is found in fruits. 2-Octenyl acetate is present in banana. 2-Octenyl acetate is a flavouring agent Present in banana. Flavouring agent. 2-Octenyl acetate is found in fruits.
Hexenal
Constituent of many foods. Flavouring ingredient. 2-Hexenal is found in many foods, some of which are black elderberry, ginkgo nuts, cucumber, and burdock. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1]. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1].
gamma-Butyrolactone
A butan-4-olide that is tetrahydrofuran substituted by an oxo group at position 2. D012997 - Solvents
n-Dodecane
A straight-chain alkane with 12 carbon atoms. It has been isolated from the essential oils of various plants including Zingiber officinale (ginger). D009676 - Noxae > D002273 - Carcinogens
Pentadecane
A straight-chain alkane with 15 carbon atoms. It is a component of volatile oils isolated from plants species like Scandix balansae.
Tridekan
Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2]. Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2].
Dodekan
D009676 - Noxae > D002273 - Carcinogens
Hexenal
Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1]. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1].