NCBI Taxonomy: 64034

Actaea heracleifolia (ncbi_taxid: 64034)

found 67 associated metabolites at species taxonomy rank level.

Ancestor: Actaea

Child Taxonomies: none taxonomy data.

Caffeic acid

(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0423)


Caffeic acid is a hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a hydroxycinnamic acid and a member of catechols. Caffeic Acid is a natural product found in Pavetta indica, Eupatorium cannabinum, and other organisms with data available. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. Upon administration, caffeic acid acts as an antioxidant and prevents oxidative stress, thereby preventing DNA damage induced by free radicals. Caffeic acid targets and inhibits the histone demethylase (HDM) oncoprotein gene amplified in squamous cell carcinoma 1 (GASC1; JMJD2C; KDM4C) and inhibits cancer cell proliferation. GASC1, a member of the KDM4 subgroup of Jumonji (Jmj) domain-containing proteins, demethylates trimethylated lysine 9 and lysine 36 on histone H3 (H3K9 and H3K36), and plays a key role in tumor cell development. Caffeic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Arctium lappa Root (part of); Comfrey Leaf (part of) ... View More ... 3,4-Dihydroxy-trans-cinnamate, also known as trans-Caffeate, is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). trans-Caffeic acid is found in many foods, some of which are flaxseed, cereal and cereal products, common grape, fruits, and common sage. It is also found in wine and coffee in free and conjugated forms. Caffeic acid (CAS: 331-39-5) is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). Caffeic acid has been found to be a microbial metabolite of Escherichia (PMID: 28396925). Caffeic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=331-39-5 (retrieved 2024-06-28) (CAS RN: 331-39-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Ferulic acid

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C10H10O4 (194.0579)


trans-Ferulic acid is a highly abundant phenolic phytochemical which is present in plant cell walls. Ferulic acid is a phenolic acid that can be absorbed by the small intestine and excreted through the urine. It is one of the most abundant phenolic acids in plants, varying from 5 g/kg in wheat bran to 9 g/kg in sugar-beet pulp and 50 g/kg in corn kernel. It occurs primarily in seeds and leaves both in its free form (albeit rarely) and covalently linked to lignin and other biopolymers. It is usually found as ester cross-links with polysaccharides in the cell wall, such as arabinoxylans in grasses, pectin in spinach and sugar beet, and xyloglucans in bamboo. It also can cross-link with proteins. Due to its phenolic nucleus and an extended side chain conjugation (carbohydrates and proteins), it readily forms a resonance-stabilized phenoxy radical which accounts for its potent antioxidant potential. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reducing oxidative damage and amyloid pathology in Alzheimer disease (PMID:17127365, 1398220, 15453708, 9878519). Ferulic acid can be found in Pseudomonas and Saccharomyces (PMID:8395165). Ferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. It has a role as an antioxidant, a MALDI matrix material, a plant metabolite, an anti-inflammatory agent, an apoptosis inhibitor and a cardioprotective agent. It is a conjugate acid of a ferulate. Ferulic acid is a natural product found in Haplophyllum griffithianum, Visnea mocanera, and other organisms with data available. Ferulic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Angelica sinensis root (part of). Widely distributed in plants, first isolated from Ferula foetida (asafoetida). Antioxidant used to inhibit oxidn. of fats, pastry products, etc. Antifungal agent used to prevent fruit spoilage. trans-Ferulic acid is found in many foods, some of which are deerberry, peach, shea tree, and common bean. A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H074 (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Isoferulic acid

(2E)-3-(3-hydroxy-4-methoxyphenyl)prop-2-enoic acid

C10H10O4 (194.0579)


Isoferulic acid (CAS: 537-73-5) is a chlorogenic acid (CGA). CGAs are formed by the esterification of hydroxycinnamic acids (e.g. caffeic acid, ferulic acid, and p-coumaric acid) with quinic acid. CGAs are abundant phenolic compounds in coffee, with caffeoylquinic (CQA), feruloylquinic (FQA), and dicaffeoylquinic (diCQA) acids being the major subclasses, and coffee is the most consumed food product in the world. Isoferulic acid is present in normal human urine in concentrations of 0.05-2.07 umol/mmol creatinine at baseline, and reaches 0.2-9.6 umol/mmol creatinine in four hours after a cup of coffee, with a large inter-individual variation (PMID:17884997). It is used as a food additive; listed in the EAFUS Food Additive Database (Jan 2001) KEIO_ID I024 Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2]. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2].

   

Fukinolic acid

2-[(3,4-dihydroxyphenyl)methyl]-3-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-2-hydroxybutanedioic acid

C20H18O11 (434.0849)


Fukinolic acid is found in green vegetables. Fukinolic acid is from Petasites japonicus (sweet coltsfoot) and Cimicifuga racemos

   

Fukiic acid

(2R,3S)-2-[(3,4-dihydroxyphenyl)methyl]-2,3-dihydroxybutanedioic acid

C11H12O8 (272.0532)


Fukiic acid is found in green vegetables. Fukiic acid is a hydrolysis produced from Petasites japonicus (sweet coltsfoot

   

cis-Caffeic acid

(2Z)-3-(3,4-Dihydroxyphenyl)-2-propenoic acid

C9H8O4 (180.0423)


Caffeic acid, also known as caffeate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Caffeic acid exists in all living species, ranging from bacteria to humans. It is the precursor to ferulic acid, coniferyl alcohol, and sinapyl alcohol, all of which are significant building blocks in lignin. Outside of the human body, caffeic acid has been detected, but not quantified in fats and oils and nuts. Caffeic acid is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Caffeic acid has a variety of potential pharmacological effects in in vitro studies and in animal models, and the inhibitory effect of caffeic acid on cancer cell proliferation by an oxidative mechanism in the human HT-1080 fibrosarcoma cell line has recently been established. It occurs at high levels in black chokeberry (141 mg per 100 g) and in fairly high level in lingonberry (6 mg per 100 g). D020011 - Protective Agents > D000975 - Antioxidants Found in olive oil, peanuts and other plant sources Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Cimiracemate A

3-(3,4-Dihydroxyphenyl)-2-oxopropyl 3-(3-hydroxy-4-methoxyphenyl)prop-2-enoic acid

C19H18O7 (358.1052)


   

cis-Isoferulic acid

3-(3-hydroxy-4-methoxyphenyl)prop-2-enoic acid

C10H10O4 (194.0579)


   

Isoferulic acid

3-Hydroxy-4-methoxycinnamic acid, predominantly trans, 97\\%

C10H10O4 (194.0579)


Isoferulic acid (CAS: 537-73-5) is a chlorogenic acid (CGA). CGAs are formed by the esterification of hydroxycinnamic acids (e.g. caffeic acid, ferulic acid, and p-coumaric acid) with quinic acid. CGAs are abundant phenolic compounds in coffee, with caffeoylquinic (CQA), feruloylquinic (FQA), and dicaffeoylquinic (diCQA) acids being the major subclasses, and coffee is the most consumed food product in the world. Isoferulic acid is present in normal human urine in concentrations of 0.05-2.07 umol/mmol creatinine at baseline, and reaches 0.2-9.6 umol/mmol creatinine in four hours after a cup of coffee, with a large inter-individual variation (PMID:17884997). Isoferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 4 and 3 respectively on the phenyl ring. It has a role as a metabolite, a biomarker and an antioxidant. Isoferulic acid is a natural product found in Sibiraea angustata, Astragalus onobrychis, and other organisms with data available. See also: Black Cohosh (part of); Ipomoea aquatica leaf (part of). It is used as a food additive; listed in the EAFUS Food Additive Database (Jan 2001) Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2]. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2].

   

Isoferulic acid

3-Hydroxy-4-methoxycinnamic acid, predominantly trans, 97\\%

C10H10O4 (194.0579)


Isoferulic acid (CAS: 537-73-5) is a chlorogenic acid (CGA). CGAs are formed by the esterification of hydroxycinnamic acids (e.g. caffeic acid, ferulic acid, and p-coumaric acid) with quinic acid. CGAs are abundant phenolic compounds in coffee, with caffeoylquinic (CQA), feruloylquinic (FQA), and dicaffeoylquinic (diCQA) acids being the major subclasses, and coffee is the most consumed food product in the world. Isoferulic acid is present in normal human urine in concentrations of 0.05-2.07 umol/mmol creatinine at baseline, and reaches 0.2-9.6 umol/mmol creatinine in four hours after a cup of coffee, with a large inter-individual variation (PMID:17884997). Isoferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 4 and 3 respectively on the phenyl ring. It has a role as a metabolite, a biomarker and an antioxidant. Isoferulic acid is a natural product found in Sibiraea angustata, Astragalus onobrychis, and other organisms with data available. See also: Black Cohosh (part of); Ipomoea aquatica leaf (part of). A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 4 and 3 respectively on the phenyl ring. It is used as a food additive; listed in the EAFUS Food Additive Database (Jan 2001) Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2]. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2].

   

Cimicifugic acid A

(+)-Cimicifugic acid A

C21H20O11 (448.1006)


   

Cimicifugic acid B

(+)-Cimicifugic acid B

C21H20O11 (448.1006)


   

Cimiracemate A

Cimiracemate A

C19H18O7 (358.1052)


   

Cimicifugic acid E

(+)-Cimicifugic acid E

C21H20O10 (432.1056)


   

Cimicifugic acid F

(+)-Cimicifugic acid F

C21H20O10 (432.1056)


   

Cimicifugic acid D

(+)-Cimicifugic acid D

C20H18O10 (418.09)


   

Piscidic acid

2,3-dihydroxy-2-[(4-hydroxyphenyl)methyl]butanedioic acid

C11H12O7 (256.0583)


   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Cimiside E

(2S,3R,4S,5R)-2-[[(1S,2R,3S,4R,7R,9S,12R,14S,17R,18R,19R,21R,22S)-2-hydroxy-3,8,8,17,19-pentamethyl-22-prop-1-en-2-yl-23,24-dioxaheptacyclo[19.2.1.01,18.03,17.04,14.07,12.012,14]tetracosan-9-yl]oxy]oxane-3,4,5-triol

C35H54O8 (602.3818)


Cimiside E is a natural product found in Actaea asiatica, Actaea cimicifuga, and Actaea heracleifolia with data available.

   

Caffeate

(2Z)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0423)


D020011 - Protective Agents > D000975 - Antioxidants KEIO_ID C107 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Caffeic Acid

3,4-dihydroxy cinnamic acid

C9H8O4 (180.0423)


A hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. 3,4-dihydroxycinnamic acid, also known as caffeic acid or trans-caffeate, is a member of the class of compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 3,4-dihydroxycinnamic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxycinnamic acid can be found in fats and oils and nuts, which makes 3,4-dihydroxycinnamic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxycinnamic acid exists in all eukaryotes, ranging from yeast to humans. Caffeic acid is an organic compound that is classified as a hydroxycinnamic acid. This yellow solid consists of both phenolic and acrylic functional groups. It is found in all plants because it is a key intermediate in the biosynthesis of lignin, one of the principal components of plant biomass and its residues . Caffeic acid is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food. (PMID:16870009) [HMDB]. Caffeic acid is found in many foods, some of which are cardoon, coriander, common persimmon, and irish moss. D020011 - Protective Agents > D000975 - Antioxidants Annotation level-2 CONFIDENCE standard compound; INTERNAL_ID 167 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.412 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.403 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

ferulate

InChI=1\C10H10O4\c1-14-9-6-7(2-4-8(9)11)3-5-10(12)13\h2-6,11H,1H3,(H,12,13

C10H10O4 (194.0579)


Ferulic acid, also known as 4-hydroxy-3-methoxycinnamic acid or 3-methoxy-4-hydroxy-trans-cinnamic acid, is a member of the class of compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Ferulic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Ferulic acid can be found in a number of food items such as flaxseed, pepper (c. chinense), chinese cinnamon, and wakame, which makes ferulic acid a potential biomarker for the consumption of these food products. Ferulic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and stratum corneum tissues. Ferulic acid exists in all eukaryotes, ranging from yeast to humans. Ferulic acid is a hydroxycinnamic acid, a type of organic compound. It is an abundant phenolic phytochemical found in plant cell walls, covalently bonded as side chains to molecules such as arabinoxylans. As a component of lignin, ferulic acid is a precursor in the manufacture of other aromatic compounds. The name is derived from the genus Ferula, referring to the giant fennel (Ferula communis) . D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

Ferulic acid

4-hydroxy-3-methoxycinnamic acid

C10H10O4 (194.0579)


(E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

Isoferulic acid

3-hydroxy-4-methoxycinnamic acid

C10H10O4 (194.0579)


Isoferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 4 and 3 respectively on the phenyl ring. It has a role as a metabolite, a biomarker and an antioxidant. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities.

   

Fukiic acid

(2R,3S)-2-[(3,4-dihydroxyphenyl)methyl]-2,3-dihydroxybutanedioic acid

C11H12O8 (272.0532)


   

Fukinolic acid

2-[(3,4-dihydroxyphenyl)methyl]-3-{[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-2-hydroxybutanedioic acid

C20H18O11 (434.0849)


D004791 - Enzyme Inhibitors

   

AI3-63211

InChI=1\C9H8O4\c10-7-3-1-6(5-8(7)11)2-4-9(12)13\h1-5,10-11H,(H,12,13)\b4-2

C9H8O4 (180.0423)


D020011 - Protective Agents > D000975 - Antioxidants Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

537-73-5

3-Hydroxy-4-methoxycinnamic acid, predominantly trans

C10H10O4 (194.0579)


Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2]. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2].

   

Butanedioic acid, 2,3-dihydroxy-2-((4-hydroxyphenyl)methyl)-, (2R,3S)-

Butanedioic acid, 2,3-dihydroxy-2-((4-hydroxyphenyl)methyl)-, (2R,3S)-

C11H12O7 (256.0583)


   

3-(2-methylbut-2-en-1-yl)-3h-indol-2-ol

3-(2-methylbut-2-en-1-yl)-3h-indol-2-ol

C13H15NO (201.1154)


   

2-[(1r,2r,3r,7r,9s,12r,14r,17r,18r,19r,22s)-2,9-dihydroxy-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracos-4-en-22-yl]propan-2-yl acetate

2-[(1r,2r,3r,7r,9s,12r,14r,17r,18r,19r,22s)-2,9-dihydroxy-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracos-4-en-22-yl]propan-2-yl acetate

C32H48O6 (528.3451)


   

(3s)-3-[(2e)-2-methylbut-2-en-1-yl]-3h-indol-2-ol

(3s)-3-[(2e)-2-methylbut-2-en-1-yl]-3h-indol-2-ol

C13H15NO (201.1154)


   

(1r,2r,3r,7r,9s,12r,14r,17r,18r,19r,21r,22s)-22-(2-hydroxypropan-2-yl)-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracos-4-ene-2,9-diol

(1r,2r,3r,7r,9s,12r,14r,17r,18r,19r,21r,22s)-22-(2-hydroxypropan-2-yl)-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracos-4-ene-2,9-diol

C30H46O5 (486.3345)


   

(2r,3s)-2-[(3,4-dihydroxyphenyl)methyl]-2-hydroxy-3-(4-hydroxybenzoyloxy)butanedioic acid

(2r,3s)-2-[(3,4-dihydroxyphenyl)methyl]-2-hydroxy-3-(4-hydroxybenzoyloxy)butanedioic acid

C18H16O10 (392.0743)


   

2-[(3,4-dihydroxyphenyl)methyl]-2-hydroxy-3-{[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}butanedioic acid

2-[(3,4-dihydroxyphenyl)methyl]-2-hydroxy-3-{[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}butanedioic acid

C22H22O12 (478.1111)


   

(2r,3s)-2-[(3,4-dihydroxyphenyl)methyl]-2-hydroxy-3-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}butanedioic acid

(2r,3s)-2-[(3,4-dihydroxyphenyl)methyl]-2-hydroxy-3-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}butanedioic acid

C20H18O10 (418.09)


   

22-(2-hydroxypropan-2-yl)-3,8,8,17,19-pentamethyl-23,24,25-trioxaheptacyclo[19.2.1.1⁹,¹².0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹²]pentacos-4(14)-en-2-ol

22-(2-hydroxypropan-2-yl)-3,8,8,17,19-pentamethyl-23,24,25-trioxaheptacyclo[19.2.1.1⁹,¹².0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹²]pentacos-4(14)-en-2-ol

C30H46O5 (486.3345)


   

(1r)-1-[(1r,4r,5r,6r,8r,10r,11r,12r,16r,18s,21r)-10,11-dihydroxy-4,6,12,17,17-pentamethyl-18-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docos-13-en-8-yl]-2-hydroxy-2-methylpropyl acetate

(1r)-1-[(1r,4r,5r,6r,8r,10r,11r,12r,16r,18s,21r)-10,11-dihydroxy-4,6,12,17,17-pentamethyl-18-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docos-13-en-8-yl]-2-hydroxy-2-methylpropyl acetate

C37H58O11 (678.3979)


   

2-hydroxy-3-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-2-[(4-hydroxyphenyl)methyl]butanedioic acid

2-hydroxy-3-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-2-[(4-hydroxyphenyl)methyl]butanedioic acid

C21H20O10 (432.1056)


   

(2r,3s)-2-[(3,4-dihydroxyphenyl)methyl]-2-hydroxy-3-{[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}butanedioic acid

(2r,3s)-2-[(3,4-dihydroxyphenyl)methyl]-2-hydroxy-3-{[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}butanedioic acid

C22H22O12 (478.1111)


   

2-[(3,4-dihydroxyphenyl)methyl]-2-hydroxy-3-{[3-(3-hydroxy-4-methoxyphenyl)prop-2-enoyl]oxy}butanedioic acid

2-[(3,4-dihydroxyphenyl)methyl]-2-hydroxy-3-{[3-(3-hydroxy-4-methoxyphenyl)prop-2-enoyl]oxy}butanedioic acid

C21H20O11 (448.1006)


   

2-[(3,4-dihydroxyphenyl)methyl]-2-hydroxy-3-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}butanedioic acid

2-[(3,4-dihydroxyphenyl)methyl]-2-hydroxy-3-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}butanedioic acid

C20H18O10 (418.09)


   

(2r,3s)-3-{[3-(3,4-dimethoxyphenyl)prop-2-enoyl]oxy}-2-hydroxy-2-[(4-hydroxyphenyl)methyl]butanedioic acid

(2r,3s)-3-{[3-(3,4-dimethoxyphenyl)prop-2-enoyl]oxy}-2-hydroxy-2-[(4-hydroxyphenyl)methyl]butanedioic acid

C22H22O10 (446.1213)


   

(1r,2r,3r,7r,9s,12r,14r,17r,18r,19r,22s)-22-(2-hydroxypropan-2-yl)-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracos-4-ene-2,9-diol

(1r,2r,3r,7r,9s,12r,14r,17r,18r,19r,22s)-22-(2-hydroxypropan-2-yl)-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracos-4-ene-2,9-diol

C30H46O5 (486.3345)


   

2-hydroxy-3-{[3-(3-hydroxy-4-methoxyphenyl)prop-2-enoyl]oxy}-2-[(4-hydroxyphenyl)methyl]butanedioic acid

2-hydroxy-3-{[3-(3-hydroxy-4-methoxyphenyl)prop-2-enoyl]oxy}-2-[(4-hydroxyphenyl)methyl]butanedioic acid

C21H20O10 (432.1056)


   

2-[(3,4-dihydroxyphenyl)methyl]-2-hydroxy-3-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}butanedioic acid

2-[(3,4-dihydroxyphenyl)methyl]-2-hydroxy-3-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}butanedioic acid

C21H20O11 (448.1006)


   

4-(2-hydroxyethyl)-3-methoxyphenyl 3-(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoate

4-(2-hydroxyethyl)-3-methoxyphenyl 3-(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoate

C25H30O11 (506.1788)


   

2-[(1r,2r,3r,7r,9s,12r,14r,17r,18r,19r,21r,22s)-2,9-dihydroxy-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracos-4-en-22-yl]propan-2-yl acetate

2-[(1r,2r,3r,7r,9s,12r,14r,17r,18r,19r,21r,22s)-2,9-dihydroxy-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracos-4-en-22-yl]propan-2-yl acetate

C32H48O6 (528.3451)


   

2-[(3,4-dihydroxyphenyl)methyl]-2-hydroxy-3-(4-hydroxybenzoyloxy)butanedioic acid

2-[(3,4-dihydroxyphenyl)methyl]-2-hydroxy-3-(4-hydroxybenzoyloxy)butanedioic acid

C18H16O10 (392.0743)


   

3-{[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-2-hydroxy-2-[(4-hydroxyphenyl)methyl]butanedioic acid

3-{[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-2-hydroxy-2-[(4-hydroxyphenyl)methyl]butanedioic acid

C20H18O10 (418.09)


   

1-{12,13-dihydroxy-6,8,14,19,19-pentamethyl-11,23-dioxahexacyclo[18.2.1.0¹,¹⁸.0³,¹⁵.0⁶,¹⁴.0⁷,¹²]tricos-3(15)-en-10-yl}-2-hydroxy-2-methylpropyl acetate

1-{12,13-dihydroxy-6,8,14,19,19-pentamethyl-11,23-dioxahexacyclo[18.2.1.0¹,¹⁸.0³,¹⁵.0⁶,¹⁴.0⁷,¹²]tricos-3(15)-en-10-yl}-2-hydroxy-2-methylpropyl acetate

C32H50O7 (546.3556)


   

(1r,2r,7s,17r,18r,19r,21r,22r)-2-hydroxy-22-(2-hydroxypropan-2-yl)-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracos-4-en-9-one

(1r,2r,7s,17r,18r,19r,21r,22r)-2-hydroxy-22-(2-hydroxypropan-2-yl)-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracos-4-en-9-one

C30H44O5 (484.3189)


   

2-hydroxy-3-{[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-2-[(4-hydroxyphenyl)methyl]butanedioic acid

2-hydroxy-3-{[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-2-[(4-hydroxyphenyl)methyl]butanedioic acid

C22H22O11 (462.1162)


   

(2s,3r,4s,5r)-2-{[(9s,12r,14s,17r)-2-hydroxy-3,8,8,17,19-pentamethyl-22-(prop-1-en-2-yl)-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracosan-9-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5r)-2-{[(9s,12r,14s,17r)-2-hydroxy-3,8,8,17,19-pentamethyl-22-(prop-1-en-2-yl)-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracosan-9-yl]oxy}oxane-3,4,5-triol

C35H54O8 (602.3818)


   

4-(2-hydroxyethyl)-3-methoxyphenyl (2e)-3-(3-methoxy-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoate

4-(2-hydroxyethyl)-3-methoxyphenyl (2e)-3-(3-methoxy-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoate

C25H30O11 (506.1788)


   

(2r,3s)-2-hydroxy-3-{[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-2-[(4-hydroxyphenyl)methyl]butanedioic acid

(2r,3s)-2-hydroxy-3-{[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-2-[(4-hydroxyphenyl)methyl]butanedioic acid

C22H22O11 (462.1162)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

3-hydroxy-2-[(4-hydroxyphenyl)methyl]-2-{[3-(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoyl]oxy}butanedioic acid

3-hydroxy-2-[(4-hydroxyphenyl)methyl]-2-{[3-(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoyl]oxy}butanedioic acid

C27H30O15 (594.1585)


   

2-{[2-hydroxy-3,8,8,17,19-pentamethyl-22-(prop-1-en-2-yl)-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracosan-9-yl]oxy}oxane-3,4,5-triol

2-{[2-hydroxy-3,8,8,17,19-pentamethyl-22-(prop-1-en-2-yl)-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracosan-9-yl]oxy}oxane-3,4,5-triol

C35H54O8 (602.3818)


   

1-{10,11-dihydroxy-4,6,12,17,17-pentamethyl-18-[(3,4,5-trihydroxyoxan-2-yl)oxy]-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docos-13-en-8-yl}-2-hydroxy-2-methylpropyl acetate

1-{10,11-dihydroxy-4,6,12,17,17-pentamethyl-18-[(3,4,5-trihydroxyoxan-2-yl)oxy]-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docos-13-en-8-yl}-2-hydroxy-2-methylpropyl acetate

C37H58O11 (678.3979)


   

(1s)-1-[(1r,4r,5r,6r,8r,10r,11r,12r,16r,18s,21r)-10,11-dihydroxy-4,6,12,17,17-pentamethyl-18-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docos-13-en-8-yl]-2-hydroxy-2-methylpropyl acetate

(1s)-1-[(1r,4r,5r,6r,8r,10r,11r,12r,16r,18s,21r)-10,11-dihydroxy-4,6,12,17,17-pentamethyl-18-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docos-13-en-8-yl]-2-hydroxy-2-methylpropyl acetate

C37H58O11 (678.3979)


   

(2r,3s)-3-{[(2e)-3-(3,4-dimethoxyphenyl)prop-2-enoyl]oxy}-2-hydroxy-2-[(4-hydroxyphenyl)methyl]butanedioic acid

(2r,3s)-3-{[(2e)-3-(3,4-dimethoxyphenyl)prop-2-enoyl]oxy}-2-hydroxy-2-[(4-hydroxyphenyl)methyl]butanedioic acid

C22H22O10 (446.1213)


   

(1r,2r,3r,7s,12r,14r,17r,18r,19r,21r,22r)-2-hydroxy-22-(2-hydroxypropan-2-yl)-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracos-4-en-9-one

(1r,2r,3r,7s,12r,14r,17r,18r,19r,21r,22r)-2-hydroxy-22-(2-hydroxypropan-2-yl)-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracos-4-en-9-one

C30H44O5 (484.3189)


   

(1r)-1-[(1s,6r,7r,8r,10r,12r,13r,14r,18s,20s)-12,13-dihydroxy-6,8,14,19,19-pentamethyl-11,23-dioxahexacyclo[18.2.1.0¹,¹⁸.0³,¹⁵.0⁶,¹⁴.0⁷,¹²]tricos-3(15)-en-10-yl]-2-hydroxy-2-methylpropyl acetate

(1r)-1-[(1s,6r,7r,8r,10r,12r,13r,14r,18s,20s)-12,13-dihydroxy-6,8,14,19,19-pentamethyl-11,23-dioxahexacyclo[18.2.1.0¹,¹⁸.0³,¹⁵.0⁶,¹⁴.0⁷,¹²]tricos-3(15)-en-10-yl]-2-hydroxy-2-methylpropyl acetate

C32H50O7 (546.3556)


   

(2r,3r)-3-hydroxy-2-[(4-hydroxyphenyl)methyl]-2-{[(2e)-3-(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoyl]oxy}butanedioic acid

(2r,3r)-3-hydroxy-2-[(4-hydroxyphenyl)methyl]-2-{[(2e)-3-(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoyl]oxy}butanedioic acid

C27H30O15 (594.1585)