NCBI Taxonomy: 487993

Persicaria ferruginea (ncbi_taxid: 487993)

found 66 associated metabolites at species taxonomy rank level.

Ancestor: Persicaria

Child Taxonomies: none taxonomy data.

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Pinostrobin

(2R)-5-hydroxy-7-methoxy-2-phenyl-3,4-dihydro-2H-1-benzopyran-4-one

C16H14O4 (270.0892044)


A monohydroxyflavanone that is (2S)-flavanone substituted by a hydroxy group at position 5 and a methoxy group at position 7 respectively. Pinostrobin is a natural product found in Uvaria chamae, Zuccagnia punctata, and other organisms with data available.

   

2'-Hydroxy-4',6'-dimethoxychalcone

2-Propen-1-one, 1-(2-hydroxy-4,6-dimethoxyphenyl)-3-phenyl-, (2E)-

C17H16O4 (284.1048536)


Flavokawain B is a member of the class of chalcones that consists of trans-chalcone substituted by hydroxy group at positions 2 and methoxy groups at positions 4 and 6. Isolated from Piper methysticum and Piper rusbyi, it exhibits antileishmanial, anti-inflammatory and antineoplastic activities. It has a role as a metabolite, an antileishmanial agent, an anti-inflammatory agent, an apoptosis inducer and an antineoplastic agent. It is a member of chalcones, a dimethoxybenzene and a member of phenols. It is functionally related to a trans-chalcone. Flavokawain b is a natural product found in Alpinia rafflesiana, Bistorta officinalis, and other organisms with data available. See also: Piper methysticum root (part of). A member of the class of chalcones that consists of trans-chalcone substituted by hydroxy group at positions 2 and methoxy groups at positions 4 and 6. Isolated from Piper methysticum and Piper rusbyi, it exhibits antileishmanial, anti-inflammatory and antineoplastic activities. 2-Hydroxy-4,6-dimethoxychalcone is found in beverages. 2-Hydroxy-4,6-dimethoxychalcone is found in kava (Piper methysticum), FDA advises against use of kava in food due to potential risk of severe liver damage (2002). Found in kava (Piper methysticum), FDA advises against use of kava in food due to potential risk of severe liver damage (2002) Flavokawain B (Flavokavain B) is a chalcone isolated from the root extracts of kava-kava plant and a potent apoptosis inducer for inhibiting the growth of various cancer cell lines. Flavokawain B (Flavokavain B) shows strong antiangiogenic activity. Flavokawain B (Flavokavain B) inhibits human brain endothelial cell (HUVEC) migration and tube formation with very low and non-toxic concentrations[1][2]. Flavokawain B (Flavokavain B) is a chalcone isolated from the root extracts of kava-kava plant and a potent apoptosis inducer for inhibiting the growth of various cancer cell lines. Flavokawain B (Flavokavain B) shows strong antiangiogenic activity. Flavokawain B (Flavokavain B) inhibits human brain endothelial cell (HUVEC) migration and tube formation with very low and non-toxic concentrations[1][2].

   

1-(2,4-dihydroxy-6-methoxyphenyl)-3-phenylprop-2-en-1-one

1-(2,4-dihydroxy-6-methoxyphenyl)-3-phenylprop-2-en-1-one

C16H14O4 (270.0892044)


   

2-Propen-1-one, 1-(2,6-dihydroxy-3,4-dimethoxyphenyl)-3-phenyl-, (E)-; (2E)-1-(2,6-Dihydroxy-3,4-dimethoxyphenyl)-3-phenyl-2-propen-1-one

2-Propen-1-one, 1-(2,6-dihydroxy-3,4-dimethoxyphenyl)-3-phenyl-, (E)-; (2E)-1-(2,6-Dihydroxy-3,4-dimethoxyphenyl)-3-phenyl-2-propen-1-one

C17H16O5 (300.0997686)


   

(2R)-5-Hydroxy-7-methoxy-2-phenyl-3,4-dihydro-2H-1-benzopyran-4-one

(2R)-5-hydroxy-7-methoxy-2-phenyl-3,4-dihydro-2H-1-benzopyran-4-one

C16H14O4 (270.0892044)


Pinostrobin, also known as 5-hydroxy-7-methoxyflavanone, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, pinostrobin is considered to be a flavonoid lipid molecule. Pinostrobin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Pinostrobin can be found in a number of food items such as roman camomile, soursop, rocket salad, and angelica, which makes pinostrobin a potential biomarker for the consumption of these food products.

   

Cardamomin

InChI=1/C16H14O4/c1-20-15-10-12(17)9-14(19)16(15)13(18)8-7-11-5-3-2-4-6-11/h2-10,17,19H,1H3/b8-7

C16H14O4 (270.0892044)


Cardamonin is a member of chalcones. Cardamonin (also known as Dihydroxymethoxychalcone), as shown by the increasing number of publications, has received growing attention from the scientific community due to the expectations toward its benefits to human health. Cardamonins name comes from the fact that it can be found in cardamom spice. Cardamonin is a natural product found in Amomum subulatum, Alpinia blepharocalyx, and other organisms with data available. (E)-Cardamonin ((E)-Cardamomin) is a novel antagonist of hTRPA1 cation channel with an IC50 of 454 nM. (E)-Cardamonin ((E)-Cardamomin) is a novel antagonist of hTRPA1 cation channel with an IC50 of 454 nM. Cardamonin can be found from cardamom, and target various signaling molecules, transcriptional factors, cytokines and enzymes. Cardamonin can inhibit mTOR, NF-κB, Akt, STAT3, Wnt/β-catenin and COX-2. Cardamonin shows anticancer, anti-inflammatory, antimicrobial and antidiabetic activities[1][2].

   

2,4-dihydroxy-6-methoxychalcone

1-(2,4-dihydroxy-6-methoxyphenyl)-3-phenylprop-2-en-1-one

C16H14O4 (270.0892044)


Cardamonin can be found from cardamom, and target various signaling molecules, transcriptional factors, cytokines and enzymes. Cardamonin can inhibit mTOR, NF-κB, Akt, STAT3, Wnt/β-catenin and COX-2. Cardamonin shows anticancer, anti-inflammatory, antimicrobial and antidiabetic activities[1][2].

   

Cardamonin

(E) -2,4-Dihydroxy-6-methoxychalcone

C16H14O4 (270.0892044)


(E)-Cardamonin ((E)-Cardamomin) is a novel antagonist of hTRPA1 cation channel with an IC50 of 454 nM. (E)-Cardamonin ((E)-Cardamomin) is a novel antagonist of hTRPA1 cation channel with an IC50 of 454 nM.

   

Pashanone

2-Propen-1-one, 1-(2,6-dihydroxy-3,4-dimethoxyphenyl)-3-phenyl-, (E)-; (2E)-1-(2,6-Dihydroxy-3,4-dimethoxyphenyl)-3-phenyl-2-propen-1-one

C17H16O5 (300.0997686)


Pashanone is a natural product found in Onychium siliculosum, Lindera erythrocarpa, and other organisms with data available.

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

2-{[14-(5-ethyl-6-methylheptan-2-yl)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.4389659999999)


   

ST 29:1;O;Hex

stigmast-5-en-3beta-yl beta-D-galactopyranoside

C35H60O6 (576.4389659999999)


   

Pinocembrin-7-methyl ether

5-hydroxy-7-methoxy-2-phenylchroman-4-one

C16H14O4 (270.0892044)


   

cardamomin

2-Propen-1-one, 1-(2,4-dihydroxy-6-methoxyphenyl)-3-phenyl-, (2E)-

C16H14O4 (270.0892044)


(E)-Cardamonin ((E)-Cardamomin) is a novel antagonist of hTRPA1 cation channel with an IC50 of 454 nM. (E)-Cardamonin ((E)-Cardamomin) is a novel antagonist of hTRPA1 cation channel with an IC50 of 454 nM. Cardamonin can be found from cardamom, and target various signaling molecules, transcriptional factors, cytokines and enzymes. Cardamonin can inhibit mTOR, NF-κB, Akt, STAT3, Wnt/β-catenin and COX-2. Cardamonin shows anticancer, anti-inflammatory, antimicrobial and antidiabetic activities[1][2].

   

(3r)-5,7-dihydroxy-3-[(s)-hydroxy(phenyl)methyl]-6-methoxy-2,3-dihydro-1-benzopyran-4-one

(3r)-5,7-dihydroxy-3-[(s)-hydroxy(phenyl)methyl]-6-methoxy-2,3-dihydro-1-benzopyran-4-one

C17H16O6 (316.0946836)


   

5,7-dihydroxy-3-[hydroxy(phenyl)methyl]-6-methoxy-2,3-dihydro-1-benzopyran-4-one

5,7-dihydroxy-3-[hydroxy(phenyl)methyl]-6-methoxy-2,3-dihydro-1-benzopyran-4-one

C17H16O6 (316.0946836)


   

7-hydroxy-5,8-dimethoxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

7-hydroxy-5,8-dimethoxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

C17H16O5 (300.0997686)


   

(2s)-7-hydroxy-5,8-dimethoxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

(2s)-7-hydroxy-5,8-dimethoxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

C17H16O5 (300.0997686)


   

(2r,3s)-3-hydroxy-2-(hydroxymethyl)-3-phenyl-1-(2,4,6-trihydroxy-3-methoxyphenyl)propan-1-one

(2r,3s)-3-hydroxy-2-(hydroxymethyl)-3-phenyl-1-(2,4,6-trihydroxy-3-methoxyphenyl)propan-1-one

C17H18O7 (334.10524780000003)


   

3-hydroxy-2-(hydroxymethyl)-3-phenyl-1-(2,4,6-trihydroxy-3-methoxyphenyl)propan-1-one

3-hydroxy-2-(hydroxymethyl)-3-phenyl-1-(2,4,6-trihydroxy-3-methoxyphenyl)propan-1-one

C17H18O7 (334.10524780000003)