NCBI Taxonomy: 463319

Mallotus apelta (ncbi_taxid: 463319)

found 49 associated metabolites at species taxonomy rank level.

Ancestor: Mallotus

Child Taxonomies: none taxonomy data.

Scopoletin

7-hydroxy-6-methoxy-2H-chromen-2-one

C10H8O4 (192.0423)


Scopoletin is a hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. It has a role as a plant growth regulator and a plant metabolite. It is functionally related to an umbelliferone. Scopoletin is a natural product found in Ficus auriculata, Haplophyllum cappadocicum, and other organisms with data available. Scopoletin is a coumarin compound found in several plants including those in the genus Scopolia and the genus Brunfelsia, as well as chicory (Cichorium), redstem wormwood (Artemisia scoparia), stinging nettle (Urtica dioica), passion flower (Passiflora), noni (Morinda citrifolia fruit) and European black nightshade (Solanum nigrum) that is comprised of umbelliferone with a methoxy group substituent at position 6. Scopoletin is used to standardize and establish pharmacokinetic properties for products derived from the plants that produce it, such as noni extract. Although the mechanism(s) of action have not yet been established, this agent has potential antineoplastic, antidopaminergic, antioxidant, anti-inflammatory and anticholinesterase effects. Plant growth factor derived from the root of Scopolia carniolica or Scopolia japonica. See also: Arnica montana Flower (part of); Lycium barbarum fruit (part of); Viburnum opulus root (part of). Isolated from Angelica acutiloba (Dong Dang Gui). Scopoletin is found in many foods, some of which are lambsquarters, lemon, sunflower, and sherry. Scopoletin is found in anise. Scopoletin is isolated from Angelica acutiloba (Dong Dang Gui A hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA72_Scopoletin_pos_20eV.txt [Raw Data] CBA72_Scopoletin_pos_40eV.txt [Raw Data] CBA72_Scopoletin_neg_30eV.txt [Raw Data] CBA72_Scopoletin_neg_50eV.txt [Raw Data] CBA72_Scopoletin_pos_50eV.txt [Raw Data] CBA72_Scopoletin_pos_10eV.txt [Raw Data] CBA72_Scopoletin_neg_40eV.txt [Raw Data] CBA72_Scopoletin_neg_10eV.txt [Raw Data] CBA72_Scopoletin_pos_30eV.txt [Raw Data] CBA72_Scopoletin_neg_20eV.txt Scopoletin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=92-61-5 (retrieved 2024-07-12) (CAS RN: 92-61-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Friedelin

3(2H)-PICENONE, EICOSAHYDRO-4,4A,6B,8A,11,11,12B,14A-OCTAMETHYL-, (4R-(4.ALPHA.,4A.ALPHA.,6A.BETA.,6B.ALPHA.,8A.ALPHA.,12A.ALPHA.,12B.BETA.,14A.ALPHA.,14B.BETA.))-

C30H50O (426.3861)


Friedelin is a pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. It has a role as an anti-inflammatory drug, a non-narcotic analgesic, an antipyretic and a plant metabolite. It is a pentacyclic triterpenoid and a cyclic terpene ketone. Friedelin is a natural product found in Diospyros eriantha, Salacia chinensis, and other organisms with data available. A pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as pomegranate, sugar apple, apple, and mammee apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

friedelanol

(3S,4R,4aS,6aS,6aS,6bR,8aR,12aR,14aS,14bS)-4,4a,6a,6b,8a,11,11,14a-octamethyl-1,2,3,4,5,6,6a,7,8,9,10,12,12a,13,14,14b-hexadecahydropicen-3-ol

C30H52O (428.4018)


Epi-Friedelanol is a triterpenoid. Epifriedelanol is a natural product found in Plenckia populnea, Quercus glauca, and other organisms with data available.

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

2,3,8-Tri-O-methylellagic acid

6-hydroxy-7,13,14-trimethoxy-2,9-dioxatetracyclo[6.6.2.04,16.011,15]hexadeca-1(15),4,6,8(16),11,13-hexaene-3,10-dione

C17H12O8 (344.0532)


3,4,3-Tri-O-methylellagic acid is a tannin. 2,3,8-Tri-O-methylellagic acid is a natural product found in Lagerstroemia speciosa, Cercidiphyllum japonicum, and other organisms with data available.

   

CleomiscosinA

9H-pyrano[2,3-f]-1,4-benzodioxin-9-one, 2,3-dihydro-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-5-methoxy-, (2R,3R)-

C20H18O8 (386.1002)


Cleomiscosin A is an organic heterotricyclic compound that is 2,3-dihydro-9H-[1,4]dioxino[2,3-h]chromen-9-one substituted by 4-hydroxy-3-methoxy phenyl group at position 3, a hydroxymethyl group at position 2 and a methoxy group at position 5 (the 2R,3R stereoisomer). It exhibits anti-inflammatory activity. It has a role as a metabolite and an anti-inflammatory agent. It is a delta-lactone, an aromatic ether, an organic heterotricyclic compound, a member of phenols and a primary alcohol. Cleomiscosin A is a natural product found in Hibiscus syriacus, Artemisia minor, and other organisms with data available. An organic heterotricyclic compound that is 2,3-dihydro-9H-[1,4]dioxino[2,3-h]chromen-9-one substituted by 4-hydroxy-3-methoxy phenyl group at position 3, a hydroxymethyl group at position 2 and a methoxy group at position 5 (the 2R,3R stereoisomer). It exhibits anti-inflammatory activity. Cleomiscosin A is a coumarino-lignoid from branch of Macaranga adenantha. Cleomiscosin A is active against TNF-alpha secretion of the mouse peritoneal macrophages[1][2]. Cleomiscosin A is a coumarino-lignoid from branch of Macaranga adenantha. Cleomiscosin A is active against TNF-alpha secretion of the mouse peritoneal macrophages[1][2].

   

Epi-Friedelanol

4,4a,6b,8a,11,11,12b,14a-octamethyl-hexadecahydropicen-3-ol

C30H52O (428.4018)


   

Taraxerone

4,4,6a,8a,11,11,12b,14b-Octamethyl-1,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-octadecahydro-3(2H)-picenone

C30H48O (424.3705)


   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Taraxerone

Taraxerone

C30H48O (424.3705)


   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Scopoletin

7-hydroxy-6-methoxychromen-2-one

C10H8O4 (192.0423)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.637 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.629 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.631 IPB_RECORD: 1582; CONFIDENCE confident structure Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Scopoletol

2H-1-Benzopyran-2-one, 7-hydroxy-6-methoxy- (9CI)

C10H8O4 (192.0423)


Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

acetyl aleuritolic acid

(4aS,6aR,6bR,8aR,10S,12aR,14aS,14bS)-10-acetyloxy-2,2,6b,9,9,12a,14a-heptamethyl-1,3,4,5,6a,7,8,8a,10,11,12,13,14,14b-tetradecahydropicene-4a-carboxylic acid

C32H50O4 (498.3709)


A pentacyclic triterpenoid isolated from the leaves of Garcia parviflora.

   

(2e,4e)-3-methyl-5-[(1s,2s,3r,5r,7r,8s)-2,3,8-trihydroxy-7-methoxy-1,5-dimethyl-6-oxabicyclo[3.2.1]octan-8-yl]penta-2,4-dienoic acid

(2e,4e)-3-methyl-5-[(1s,2s,3r,5r,7r,8s)-2,3,8-trihydroxy-7-methoxy-1,5-dimethyl-6-oxabicyclo[3.2.1]octan-8-yl]penta-2,4-dienoic acid

C16H24O7 (328.1522)


   

8-(3,7-dimethylocta-2,6-dien-1-yl)-5-hydroxy-2,6,8-trimethyl-2,3-dihydro-1-benzopyran-4,7-dione

8-(3,7-dimethylocta-2,6-dien-1-yl)-5-hydroxy-2,6,8-trimethyl-2,3-dihydro-1-benzopyran-4,7-dione

C22H30O4 (358.2144)


   

(2r,8s)-8-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-5-hydroxy-2,6,8-trimethyl-2,3-dihydro-1-benzopyran-4,7-dione

(2r,8s)-8-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-5-hydroxy-2,6,8-trimethyl-2,3-dihydro-1-benzopyran-4,7-dione

C22H30O4 (358.2144)


   

(3ar,5ar,5br,7ar,11ar,11br,13as,13bs)-1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

(3ar,5ar,5br,7ar,11ar,11br,13as,13bs)-1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.3811)


   

(2s,3s)-3-(3,4-dihydroxy-5-methoxyphenyl)-2-(hydroxymethyl)-5-methoxy-2h,3h-[1,4]dioxino[2,3-h]chromen-9-one

(2s,3s)-3-(3,4-dihydroxy-5-methoxyphenyl)-2-(hydroxymethyl)-5-methoxy-2h,3h-[1,4]dioxino[2,3-h]chromen-9-one

C20H18O9 (402.0951)


   

3-methyl-5-[(1s,2s,3r,5r,7r,8s)-2,3,8-trihydroxy-7-methoxy-1,5-dimethyl-6-oxabicyclo[3.2.1]octan-8-yl]penta-2,4-dienoic acid

3-methyl-5-[(1s,2s,3r,5r,7r,8s)-2,3,8-trihydroxy-7-methoxy-1,5-dimethyl-6-oxabicyclo[3.2.1]octan-8-yl]penta-2,4-dienoic acid

C16H24O7 (328.1522)


   

(4ar,6ar,8ar,12ar,12bs,14ar,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-ol

(4ar,6ar,8ar,12ar,12bs,14ar,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-ol

C30H50O (426.3861)


   

4-methoxy-3-methylpyridin-1-ium-1-olate

4-methoxy-3-methylpyridin-1-ium-1-olate

C7H9NO2 (139.0633)


   

(2z)-3-[(2s,3r)-3,7-dihydroxy-8-methyl-2-(3,4,5-trimethoxyphenyl)-3,4-dihydro-2h-1-benzopyran-6-yl]prop-2-enoic acid

(2z)-3-[(2s,3r)-3,7-dihydroxy-8-methyl-2-(3,4,5-trimethoxyphenyl)-3,4-dihydro-2h-1-benzopyran-6-yl]prop-2-enoic acid

C22H24O8 (416.1471)


   

3-[3,7-dihydroxy-8-methyl-2-(3,4,5-trimethoxyphenyl)-3,4-dihydro-2h-1-benzopyran-6-yl]prop-2-enoic acid

3-[3,7-dihydroxy-8-methyl-2-(3,4,5-trimethoxyphenyl)-3,4-dihydro-2h-1-benzopyran-6-yl]prop-2-enoic acid

C22H24O8 (416.1471)


   

8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl acetate

8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl acetate

C32H52O3 (484.3916)


   

5,7-dihydroxy-2,6-dimethyl-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

5,7-dihydroxy-2,6-dimethyl-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C16H20O4 (276.1362)


   

13-hydroxy-6,7,14-trimethoxy-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaene-3,10-dione

13-hydroxy-6,7,14-trimethoxy-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaene-3,10-dione

C17H12O8 (344.0532)


   

5-hydroxy-7-methoxychromen-4-one

5-hydroxy-7-methoxychromen-4-one

C10H8O4 (192.0423)


   

(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl acetate

(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl acetate

C32H52O3 (484.3916)


   

(2s)-5,7-dihydroxy-2,6,8-trimethyl-2,3-dihydro-1-benzopyran-4-one

(2s)-5,7-dihydroxy-2,6,8-trimethyl-2,3-dihydro-1-benzopyran-4-one

C12H14O4 (222.0892)


   

(2s,3s)-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-5-methoxy-2h,3h-[1,4]dioxino[2,3-h]chromen-9-one

(2s,3s)-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-5-methoxy-2h,3h-[1,4]dioxino[2,3-h]chromen-9-one

C20H18O8 (386.1002)


   

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.439)


   

10-(acetyloxy)-2,2,6b,9,9,12a,14a-heptamethyl-1,3,4,5,7,8,8a,10,11,12,12b,13,14,14b-tetradecahydropicene-4a-carboxylic acid

10-(acetyloxy)-2,2,6b,9,9,12a,14a-heptamethyl-1,3,4,5,7,8,8a,10,11,12,12b,13,14,14b-tetradecahydropicene-4a-carboxylic acid

C32H50O4 (498.3709)


   

2-{[7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

2-{[7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

C25H32O10 (492.1995)


   

(4ar,6ar,8ar,12as,12bs,14ar,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-2,4a,5,6,8,9,10,12,12a,13,14,14a-dodecahydro-1h-picen-3-one

(4ar,6ar,8ar,12as,12bs,14ar,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-2,4a,5,6,8,9,10,12,12a,13,14,14a-dodecahydro-1h-picen-3-one

C30H48O (424.3705)


   

3-cyano-4-methoxypyridin-1-ium-1-olate

3-cyano-4-methoxypyridin-1-ium-1-olate

C7H6N2O2 (150.0429)


   

(2s)-5,7-dihydroxy-2,6-dimethyl-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

(2s)-5,7-dihydroxy-2,6-dimethyl-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C16H20O4 (276.1362)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

8-(3,7-dimethylocta-2,6-dien-1-yl)-5-hydroxy-2,8-dimethyl-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4,7-dione

8-(3,7-dimethylocta-2,6-dien-1-yl)-5-hydroxy-2,8-dimethyl-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4,7-dione

C26H36O4 (412.2613)


   

(4as,6as,6br,8ar,12ar,12bs,14as,14bs)-4,4a,6b,8a,11,11,12b,14a-octamethyl-hexadecahydropicen-3-ol

(4as,6as,6br,8ar,12ar,12bs,14as,14bs)-4,4a,6b,8a,11,11,12b,14a-octamethyl-hexadecahydropicen-3-ol

C30H52O (428.4018)


   

5,7-dihydroxy-2,6,8-trimethyl-2,3-dihydro-1-benzopyran-4-one

5,7-dihydroxy-2,6,8-trimethyl-2,3-dihydro-1-benzopyran-4-one

C12H14O4 (222.0892)


   

(3r,4r,4as,6as,6br,8ar,12ar,12bs,14as,14bs)-4,4a,6b,8a,11,11,12b,14a-octamethyl-hexadecahydropicen-3-ol

(3r,4r,4as,6as,6br,8ar,12ar,12bs,14as,14bs)-4,4a,6b,8a,11,11,12b,14a-octamethyl-hexadecahydropicen-3-ol

C30H52O (428.4018)


   

5,7-dihydroxy-2,8-dimethyl-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

5,7-dihydroxy-2,8-dimethyl-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C16H20O4 (276.1362)


   

(2r,3r,4s,5r)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

(2r,3r,4s,5r)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

C25H32O10 (492.1995)


   

(2s,8r)-8-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-5-hydroxy-2,8-dimethyl-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4,7-dione

(2s,8r)-8-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-5-hydroxy-2,8-dimethyl-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4,7-dione

C26H36O4 (412.2613)


   

3-(4-hydroxy-3,5-dimethoxyphenyl)-2-(hydroxymethyl)-5-methoxy-2h,3h-[1,4]dioxino[2,3-h]chromen-9-one

3-(4-hydroxy-3,5-dimethoxyphenyl)-2-(hydroxymethyl)-5-methoxy-2h,3h-[1,4]dioxino[2,3-h]chromen-9-one

C21H20O9 (416.1107)


   

(2r)-5,7-dihydroxy-2,8-dimethyl-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

(2r)-5,7-dihydroxy-2,8-dimethyl-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C16H20O4 (276.1362)