NCBI Taxonomy: 305367
Klasea centauroides (ncbi_taxid: 305367)
found 48 associated metabolites at species taxonomy rank level.
Ancestor: Klasea
Child Taxonomies: none taxonomy data.
Ajugasterone C
Ajugasterone C is a steroid. Ajugasterone C is a natural product found in Zoanthus, Cyanotis arachnoidea, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Crustecdysone
20-hydroxyecdysone is an ecdysteroid that is ecdysone substituted by a hydroxy group at position 20. It has a role as a plant metabolite and an animal metabolite. It is a 20-hydroxy steroid, an ecdysteroid, a 14alpha-hydroxy steroid, a 3beta-sterol, a 2beta-hydroxy steroid, a 22-hydroxy steroid, a 25-hydroxy steroid and a phytoecdysteroid. It is functionally related to an ecdysone. 20-Hydroxyecdysone is a natural product found in Asparagus filicinus, Trichobilharzia ocellata, and other organisms with data available. A steroid hormone that regulates the processes of MOLTING or ecdysis in insects. Ecdysterone is the 20-hydroxylated ECDYSONE. Crustecdysone is found in crustaceans. Crustecdysone is isolated from the marine crayfish Jasus lalandei in low yield (2 mg/ton D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones An ecdysteroid that is ecdysone substituted by a hydroxy group at position 20. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3]. Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3].
Kaempferide 7-glucoside
C22H22O11 (462.11620619999997)
Kaempferide 7-glucoside is found in fruits. Kaempferide 7-glucoside is isolated from wood of Prunus mume (Japanese apricot). Isolated from wood of Prunus mume (Japanese apricot). Kaempferide 7-glucoside is found in herbs and spices and fruits.
Ecdysterone
Isolated from the marine crayfish Jasus lalandei in low yield (2 mg/ton). Crustecdysone is found in crustaceans and spinach. Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3]. Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3].
Mumenin
C22H22O11 (462.11620619999997)
Crustecdysone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials SubCategory_DNP: : The sterols, Cholestanes Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3]. Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3].
3,5,6-trihydroxy-2-(4-methoxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one
3,5-dihydroxy-6-methoxy-2-(4-methoxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one
(2s)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate
n-{[(2r,3s,4s,5r,6s)-6-[(2s)-2,3-bis[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methyl}-3-(4-hydroxyphenyl)propanimidic acid
(3ar,4s,6ar,8s,9s,9as,9bs)-9-(chloromethyl)-8,9-dihydroxy-3,6-dimethylidene-2-oxo-octahydroazuleno[4,5-b]furan-4-yl (2r)-3-chloro-2-hydroxy-2-methylpropanoate
(1s,5ar,7r,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-1-[(2r,3r)-2,3,6-trihydroxy-6-methylheptan-2-yl]-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
3,5,6-trihydroxy-2-(4-methoxyphenyl)-7-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one
3,5-dihydroxy-6-methoxy-2-(4-methoxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one
3a,7,8-trihydroxy-1-[5-(3-hydroxy-3-methylbutyl)-2,2,4-trimethyl-1,3-dioxolan-4-yl]-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
9-(chloromethyl)-8,9-dihydroxy-3,6-dimethylidene-2-oxo-octahydroazuleno[4,5-b]furan-4-yl 3-chloro-2-hydroxy-2-methylpropanoate
1-(2,3-dihydroxy-6-methylheptan-2-yl)-3a,7,8,10-tetrahydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
(2s)-1-{[(2s,3r,4s,5s,6r)-6-(aminomethyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-3-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate
3a,7,8-trihydroxy-9a,11a-dimethyl-1-(2,3,6-trihydroxy-6-methylheptan-2-yl)-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
(3ar,4s,6ar,8s,9s,9as,9bs)-9-(chloromethyl)-8,9-dihydroxy-3,6-dimethylidene-2-oxo-octahydroazuleno[4,5-b]furan-4-yl (2s)-3-chloro-2-[2-(4-hydroxyphenyl)ethoxy]-2-methylpropanoate
(4s,8r,9s,9bs)-9-(chloromethyl)-8,9-dihydroxy-3,6-dimethylidene-2-oxo-octahydroazuleno[4,5-b]furan-4-yl (2s)-3-chloro-2-hydroxy-2-methylpropanoate
9-(chloromethyl)-8,9-dihydroxy-3,6-dimethylidene-2-oxo-octahydroazuleno[4,5-b]furan-4-yl 3-chloro-2-[2-(4-hydroxyphenyl)ethoxy]-2-methylpropanoate
(1s,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-1-[(4r,5r)-5-(3-hydroxy-3-methylbutyl)-2,2,4-trimethyl-1,3-dioxolan-4-yl]-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
3,5,6,7-tetrahydroxy-2-(4-methoxyphenyl)chromen-4-one
(2s)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate
3,5-dihydroxy-2-(4-methoxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one
C22H22O11 (462.11620619999997)