NCBI Taxonomy: 2737399

Petrosia durissima (ncbi_taxid: 2737399)

found 120 associated metabolites at species taxonomy rank level.

Ancestor: Petrosia

Child Taxonomies: none taxonomy data.

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Ethanol

Ethyl alcohol in alcoholic beverages

C2H6O (46.0418626)


Ethanol is a clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in alcoholic beverages. Indeed, ethanol has widespread use as a solvent of substances intended for human contact or consumption, including scents, flavorings, colorings, and medicines. Ethanol has a depressive effect on the central nervous system and because of its psychoactive effects, it is considered a drug. Ethanol has a complex mode of action and affects multiple systems in the brain, most notably it acts as an agonist to the GABA receptors. Death from ethanol consumption is possible when blood alcohol level reaches 0.4\\%. A blood level of 0.5\\% or more is commonly fatal. Levels of even less than 0.1\\% can cause intoxication, with unconsciousness often occurring at 0.3-0.4 \\%. Ethanol is metabolized by the body as an energy-providing carbohydrate nutrient, as it metabolizes into acetyl CoA, an intermediate common with glucose metabolism, that can be used for energy in the citric acid cycle or for biosynthesis. Ethanol within the human body is converted into acetaldehyde by alcohol dehydrogenase and then into acetic acid by acetaldehyde dehydrogenase. The product of the first step of this breakdown, acetaldehyde, is more toxic than ethanol. Acetaldehyde is linked to most of the clinical effects of alcohol. It has been shown to increase the risk of developing cirrhosis of the liver,[77] multiple forms of cancer, and alcoholism. Industrially, ethanol is produced both as a petrochemical, through the hydration of ethylene, and biologically, by fermenting sugars with yeast. Small amounts of ethanol are endogenously produced by gut microflora through anaerobic fermentation. However most ethanol detected in biofluids and tissues likely comes from consumption of alcoholic beverages. Absolute ethanol or anhydrous alcohol generally refers to purified ethanol, containing no more than one percent water. Absolute alcohol is not intended for human consumption. It often contains trace amounts of toxic benzene (used to remove water by azeotropic distillation). Consumption of this form of ethanol can be fatal over a short time period. Generally absolute or pure ethanol is used as a solvent for lab and industrial settings where water will disrupt a desired reaction. Pure ethanol is classed as 200 proof in the USA and Canada, equivalent to 175 degrees proof in the UK system. Ethanol is a general biomarker for the consumption of alcohol. Ethanol is also a metabolite of Hansenula and Saccharomyces (PMID: 14613880) (https://ac.els-cdn.com/S0079635206800470/1-s2.0-S0079635206800470-main.pdf?_tid=4d340044-3230-4141-88dd-deec4d2e35bd&acdnat=1550288012_0c4a20fe963843426147979d376cf624). Intoxicating constituent of all alcoholic beverages. It is used as a solvent and vehicle for food dressings and flavourings. Antimicrobial agent, e.g for pizza crusts prior to baking. extraction solvent for foodstuffs. Widely distributed in fruits and other foods V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AZ - Nerve depressants V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D000890 - Anti-Infective Agents D012997 - Solvents

   

Methane

Methane in gaseus STate

CH4 (16.0312984)


Methane (CH4), is a gas produced by a group of colonic anaerobes, absorbed from the colon and excreted in expired air. As a result, breath CH4 excretion can be used as an indicator of the in situ activity of the methanogenic flora. All CH4 produced in human beings is a metabolic product of intestinal bacteria, and about 50\\% of CH4 produced in the gut is absorbed and excreted in expired air. Because there appears to be no catabolism of this gas by other colonic organisms or host cells, breath CH4 measurements provide a rapid, simple means of semi quantitatively assessing the ongoing in situ metabolism of the methanogenic flora. It could seem likely that the intracolonic activity of a variety of bacteria similarly might be assessed quantitatively via analysis of expired air. However, the application of this methodology has been confounded by the rapid catabolism of many volatile bacterial products by other bacteria or human tissue. A striking aspect of the studies of breath CH4 measurements is the enormous individual variations in the excretion of this gas. Virtually all children under 5 years of age and 66\\% of the adult population do not exhale appreciable quantities of CH4. The remaining 34\\% of the adult population has appreciable breath methane concentrations of up to 80 ppm (mean, 15.2 ppm; median, 11.8 ppm). On this basis the population can be divided into CH4 producers or nonproducers, although a more accurate term would be to define subjects as being low or high CH4 producers. The primary methanogen present in the human colon, Methanobrevibacter smithii, produces methane via a reaction that relies entirely on H2 produced by other organisms to reduce CO2 to CH4. Thus, breath CH4 concentrations might be expected to mirror breath H2 concentrations; however, the high levels of CH4 observed in the fasting state may result from H2 derived from endogenous rather than dietary substrates. A diverse assortment of conditions has been associated with a high prevalence of methane producers including diverticulosis, cystic fibrosis, high fasting serum cholesterol levels, encopresis in children, and aorto-iliac vascular disease, whereas obesity (measured as skin-fold thickness) was related inversely to methane production. The challenge that remains is to determine to what extent methanogens actively influence body physiology vs. simply serve as passive indicators of colonic function. (PMID: 16469670, Clinical Gastroenterology and Hepatology Volume 4, Issue 2, February 2006, Pages 123-129). Methane can be found in Desulfovibrio, Methanobacterium, Methanobrevibacter, Methanococcus, Methanocorpusculum, Methanoculleus, Methanoflorens, Methanofollis, Methanogenium, Methanomicrobium, Methanopyrus, Methanoregula, Methanosaeta, Methanosarcina, Methanosphaera, Methanospirillium, Methanothermobacter (Wikipedia). Methane (CH4), is a gas produced by a group of colonic anaerobes, absorbed from the colon and excreted in expired air. As a result, breath CH4 excretion can be used as an indicator of the in situ activity of the methanogenic flora. All CH4 produced in human beings is a metabolic product of intestinal bacteria, and about 50\\% of CH4 produced in the gut is absorbed and excreted in expired air. Because there appears to be no catabolism of this gas by other colonic organisms or host cells, breath CH4 measurements provide a rapid, simple means of semi quantitatively assessing the ongoing in situ metabolism of the methanogenic flora. It could seem likely that the intracolonic activity of a variety of bacteria similarly might be assessed quantitatively via analysis of expired air. However, the application of this methodology has been confounded by the rapid catabolism of many volatile bacterial products by other bacteria or human tissue. A striking aspect of the studies of breath CH4 measurements is the enormous individual variations in the excretion of this gas. Virtually all children under 5 years of age and 66\\% of the adult population do not exhale appreciable quantities of CH4. The remaining 34\\% of the adult population has appreciable breath methane concentrations of up to 80 ppm (mean, 15.2 ppm; median, 11.8 ppm). On this basis the population can be divided into CH4 producers or nonproducers, although a more accurate term would be to define subjects as being low or high CH4 producers. The primary methanogen present in the human colon, Methanobrevibacter smithii, produces methane via a reaction that relies entirely on H2 produced by other organisms to reduce CO2 to CH4. Thus, breath CH4 concentrations might be expected to mirror breath H2 concentrations; however, the high levels of CH4 observed in the fasting state may result from H2 derived from endogenous rather than dietary substrates. A diverse assortment of conditions has been associated with a high prevalence of methane producers including diverticulosis, cystic fibrosis, high fasting serum cholesterol levels, encopresis in children, and aorto-iliac vascular disease, whereas obesity (measured as skin-fold thickness) was related inversely to methane production. The challenge that remains is to determine to what extent methanogens actively influence body physiology vs. simply serve as passive indicators of colonic function. (PMID: 16469670, Clinical Gastroenterology and Hepatology Volume 4, Issue 2, February 2006, Pages 123-129) [HMDB]

   

Clionasterol

24beta-Ethyl-5-cholesten-3beta-ol

C29H50O (414.386145)


Clionasterol is a triterpenoid isolated from the Indian marine red alga Gracilaria edulis, the sponge Veronica aerophoba and the Kenyan Marine Green. Macroalga Halimeda macroloba. It is a potent inhibitor of complement component C1. (PMID 12624828). D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

clionasterol

(3beta,24S)-stigmast-5-en-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is poriferast-5-ene carrying a beta-hydroxy substituent at position 3. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Spirt

Anti-EphB1 (ELK Receptor)-CY antibody produced in sheep

C2H6O (46.0418626)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AZ - Nerve depressants V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D000890 - Anti-Infective Agents D012997 - Solvents

   

ethanol

ethanol

C2H6O (46.0418626)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AZ - Nerve depressants V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes A primary alcohol that is ethane in which one of the hydrogens is substituted by a hydroxy group. D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D000890 - Anti-Infective Agents D012997 - Solvents

   

methane

carbane-13

CH4 (16.0312984)


A one-carbon compound in which the carbon is attached by single bonds to four hydrogen atoms. It is a colourless, odourless, non-toxic but flammable gas (b.p. -161degreeC).

   

(3s,4e,15z,26e,28s)-triaconta-4,15,26-trien-1,29-diyne-3,28-diol

(3s,4e,15z,26e,28s)-triaconta-4,15,26-trien-1,29-diyne-3,28-diol

C30H48O2 (440.36541079999995)


   

(1s,1's,2's,5's,9's,10'r,13'r,14's)-5',10',14'-trimethyl-6',16'-dioxaspiro[cyclohexane-1,7'-pentacyclo[12.3.3.0¹,¹³.0²,¹⁰.0⁵,⁹]icosan]-3-ene-2,5,15'-trione

(1s,1's,2's,5's,9's,10'r,13'r,14's)-5',10',14'-trimethyl-6',16'-dioxaspiro[cyclohexane-1,7'-pentacyclo[12.3.3.0¹,¹³.0²,¹⁰.0⁵,⁹]icosan]-3-ene-2,5,15'-trione

C26H34O5 (426.24061140000003)


   

10-hydroxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carbaldehyde

10-hydroxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carbaldehyde

C26H36O3 (396.26643060000004)


   

(1s,4ar,4br,6as,12as,12br,14ar)-10-methoxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carboxylic acid

(1s,4ar,4br,6as,12as,12br,14ar)-10-methoxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carboxylic acid

C27H38O4 (426.2769948)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylideneoctan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylideneoctan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C30H50O (426.386145)


   

(6s,18z,30e,32s)-tetratriaconta-18,30-dien-2,4,12,33-tetrayne-1,6,32-triol

(6s,18z,30e,32s)-tetratriaconta-18,30-dien-2,4,12,33-tetrayne-1,6,32-triol

C34H50O3 (506.37597500000004)


   

(1s,4ar,4bs,6as,12as,12br,14as)-1-(hydroxymethyl)-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthen-10-ol

(1s,4ar,4bs,6as,12as,12br,14as)-1-(hydroxymethyl)-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthen-10-ol

C26H38O3 (398.2820798)


   

10-methoxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carboxylic acid

10-methoxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carboxylic acid

C27H38O4 (426.2769948)


   

1-(hydroxymethyl)-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthen-10-ol

1-(hydroxymethyl)-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthen-10-ol

C26H38O3 (398.2820798)


   

(1s,2s,5s,6s,7r,10r,11s)-6-[(2,5-dihydroxyphenyl)methyl]-5-hydroxy-5,7,11-trimethyl-13-oxatetracyclo[9.3.3.0¹,¹⁰.0²,⁷]heptadecan-12-one

(1s,2s,5s,6s,7r,10r,11s)-6-[(2,5-dihydroxyphenyl)methyl]-5-hydroxy-5,7,11-trimethyl-13-oxatetracyclo[9.3.3.0¹,¹⁰.0²,⁷]heptadecan-12-one

C26H36O5 (428.2562606)


   

10-hydroxy-5,15,19-trimethyl-6,21-dioxahexacyclo[17.3.3.0¹,¹⁸.0²,¹⁵.0⁵,¹⁴.0⁷,¹²]pentacosa-7,9,11-trien-20-one

10-hydroxy-5,15,19-trimethyl-6,21-dioxahexacyclo[17.3.3.0¹,¹⁸.0²,¹⁵.0⁵,¹⁴.0⁷,¹²]pentacosa-7,9,11-trien-20-one

C26H34O4 (410.24569640000004)


   

(16z,18r)-tricos-16-en-2,4-diyne-1,18-diol

(16z,18r)-tricos-16-en-2,4-diyne-1,18-diol

C23H38O2 (346.28716479999997)


   

(8s)-8-methylhexadeca-2,4-diyn-1-ol

(8s)-8-methylhexadeca-2,4-diyn-1-ol

C17H28O (248.2140038)


   

10-methoxy-5,15,19-trimethyl-6,21-dioxahexacyclo[17.3.3.0¹,¹⁸.0²,¹⁵.0⁵,¹⁴.0⁷,¹²]pentacosa-7,9,11-trien-20-one

10-methoxy-5,15,19-trimethyl-6,21-dioxahexacyclo[17.3.3.0¹,¹⁸.0²,¹⁵.0⁵,¹⁴.0⁷,¹²]pentacosa-7,9,11-trien-20-one

C27H36O4 (424.2613456)


   

(1s,4ar,4br,6as,12as,12br,14ar)-10-hydroxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carbaldehyde

(1s,4ar,4br,6as,12as,12br,14ar)-10-hydroxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carbaldehyde

C26H36O3 (396.26643060000004)


   

(1s,4ar,4bs,6as,12as,12br,14as)-10-hydroxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carbaldehyde

(1s,4ar,4bs,6as,12as,12br,14as)-10-hydroxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carbaldehyde

C26H36O3 (396.26643060000004)


   

24-α-ethylcholesterol

24-α-ethylcholesterol

C29H50O (414.386145)


   

(1s,4ar,4br,6as,12as,12br,14ar)-10-hydroxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carboxylic acid

(1s,4ar,4br,6as,12as,12br,14ar)-10-hydroxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carboxylic acid

C26H36O4 (412.2613456)


   

(1s,2s,5s,14s,15r,18r,19r)-10-hydroxy-5,15,19-trimethyl-6,21-dioxahexacyclo[17.3.3.0¹,¹⁸.0²,¹⁵.0⁵,¹⁴.0⁷,¹²]pentacosa-7,9,11-trien-20-one

(1s,2s,5s,14s,15r,18r,19r)-10-hydroxy-5,15,19-trimethyl-6,21-dioxahexacyclo[17.3.3.0¹,¹⁸.0²,¹⁵.0⁵,¹⁴.0⁷,¹²]pentacosa-7,9,11-trien-20-one

C26H34O4 (410.24569640000004)


   

(1r,1's,2's,5's,9's,10'r,13'r,14's)-5',10',14'-trimethyl-6',16'-dioxaspiro[cyclohexane-1,7'-pentacyclo[12.3.3.0¹,¹³.0²,¹⁰.0⁵,⁹]icosan]-3-ene-2,5,15'-trione

(1r,1's,2's,5's,9's,10'r,13'r,14's)-5',10',14'-trimethyl-6',16'-dioxaspiro[cyclohexane-1,7'-pentacyclo[12.3.3.0¹,¹³.0²,¹⁰.0⁵,⁹]icosan]-3-ene-2,5,15'-trione

C26H34O5 (426.24061140000003)


   

(1s,4ar,4br,6as,12as,12br,14ar)-10-(acetyloxy)-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carboxylic acid

(1s,4ar,4br,6as,12as,12br,14ar)-10-(acetyloxy)-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carboxylic acid

C28H38O5 (454.2719098)


   

(18z,30e)-tetratriaconta-18,30-dien-2,4,12,33-tetrayne-1,6,32-triol

(18z,30e)-tetratriaconta-18,30-dien-2,4,12,33-tetrayne-1,6,32-triol

C34H50O3 (506.37597500000004)


   

tetratriaconta-18,30-dien-2,4,12,33-tetrayne-1,6,32-triol

tetratriaconta-18,30-dien-2,4,12,33-tetrayne-1,6,32-triol

C34H50O3 (506.37597500000004)


   

(1s,4as,4bs,7s,8s,8ar,10ar)-8-[(2,5-dihydroxyphenyl)methyl]-7-hydroxy-4a-(hydroxymethyl)-1,7,8a-trimethyl-decahydrophenanthrene-1-carboxylic acid

(1s,4as,4bs,7s,8s,8ar,10ar)-8-[(2,5-dihydroxyphenyl)methyl]-7-hydroxy-4a-(hydroxymethyl)-1,7,8a-trimethyl-decahydrophenanthrene-1-carboxylic acid

C26H38O6 (446.2668248)


   

(3ar,3br,9ar,9bs,11ar)-1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(3ar,3br,9ar,9bs,11ar)-1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H50O (414.386145)


   

8-methylhexadeca-2,4-diyn-1-ol

8-methylhexadeca-2,4-diyn-1-ol

C17H28O (248.2140038)


   

(30e,32s)-tetratriacont-30-en-2,4,16,33-tetrayne-1,32-diol

(30e,32s)-tetratriacont-30-en-2,4,16,33-tetrayne-1,32-diol

C34H52O2 (492.3967092)


   

tricos-16-en-2,4-diyne-1,18-diol

tricos-16-en-2,4-diyne-1,18-diol

C23H38O2 (346.28716479999997)


   

10-hydroxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carboxylic acid

10-hydroxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carboxylic acid

C26H36O4 (412.2613456)


   

10-(acetyloxy)-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carboxylic acid

10-(acetyloxy)-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carboxylic acid

C28H38O5 (454.2719098)


   

(30e)-tetratriacont-30-en-2,4,16,33-tetrayne-1,32-diol

(30e)-tetratriacont-30-en-2,4,16,33-tetrayne-1,32-diol

C34H52O2 (492.3967092)


   

(1s,2s,5s,6r,7r,10r,11s)-6-[(2,5-dihydroxyphenyl)methyl]-5-hydroxy-5,7,11-trimethyl-13-oxatetracyclo[9.3.3.0¹,¹⁰.0²,⁷]heptadecan-12-one

(1s,2s,5s,6r,7r,10r,11s)-6-[(2,5-dihydroxyphenyl)methyl]-5-hydroxy-5,7,11-trimethyl-13-oxatetracyclo[9.3.3.0¹,¹⁰.0²,⁷]heptadecan-12-one

C26H36O5 (428.2562606)


   

(16z)-tricos-16-en-2,4-diyn-1-ol

(16z)-tricos-16-en-2,4-diyn-1-ol

C23H38O (330.2922498)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

(1s,2r,5s,14s,15r,18r,19s)-10-hydroxy-5,15,19-trimethyl-6,21-dioxahexacyclo[17.3.3.0¹,¹⁸.0²,¹⁵.0⁵,¹⁴.0⁷,¹²]pentacosa-7,9,11-trien-20-one

(1s,2r,5s,14s,15r,18r,19s)-10-hydroxy-5,15,19-trimethyl-6,21-dioxahexacyclo[17.3.3.0¹,¹⁸.0²,¹⁵.0⁵,¹⁴.0⁷,¹²]pentacosa-7,9,11-trien-20-one

C26H34O4 (410.24569640000004)


   

(1s,4ar,4br,6as,12as,12br,14ar)-1-(hydroxymethyl)-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthen-10-ol

(1s,4ar,4br,6as,12as,12br,14ar)-1-(hydroxymethyl)-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthen-10-ol

C26H38O3 (398.2820798)


   

tetratriacont-30-en-2,4,16,33-tetrayne-1,32-diol

tetratriacont-30-en-2,4,16,33-tetrayne-1,32-diol

C34H52O2 (492.3967092)


   

tricos-16-en-2,4-diyn-1-ol

tricos-16-en-2,4-diyn-1-ol

C23H38O (330.2922498)


   

(6r,18e,30e,32s)-tetratriaconta-18,30-dien-2,4,12,33-tetrayne-1,6,32-triol

(6r,18e,30e,32s)-tetratriaconta-18,30-dien-2,4,12,33-tetrayne-1,6,32-triol

C34H50O3 (506.37597500000004)


   

(3s,4e,15e,26e,28s)-triaconta-4,15,26-trien-1,29-diyne-3,28-diol

(3s,4e,15e,26e,28s)-triaconta-4,15,26-trien-1,29-diyne-3,28-diol

C30H48O2 (440.36541079999995)


   

(1r,3'as,3'br,5'ar,6's,9'as,9'bs,11'as)-9'a-(hydroxymethyl)-3'b,6',11'a-trimethyl-2,5-dioxo-3'a,4',5',5'a,7',8',9',9'b,10',11'-decahydro-3'h-spiro[cyclohexane-1,2'-phenanthro[2,1-b]fura]-3-ene-6'-carboxylic acid

(1r,3'as,3'br,5'ar,6's,9'as,9'bs,11'as)-9'a-(hydroxymethyl)-3'b,6',11'a-trimethyl-2,5-dioxo-3'a,4',5',5'a,7',8',9',9'b,10',11'-decahydro-3'h-spiro[cyclohexane-1,2'-phenanthro[2,1-b]fura]-3-ene-6'-carboxylic acid

C26H36O6 (444.2511756)


   

6-[(2,5-dihydroxyphenyl)methyl]-5-hydroxy-5,7,11-trimethyl-13-oxatetracyclo[9.3.3.0¹,¹⁰.0²,⁷]heptadecan-12-one

6-[(2,5-dihydroxyphenyl)methyl]-5-hydroxy-5,7,11-trimethyl-13-oxatetracyclo[9.3.3.0¹,¹⁰.0²,⁷]heptadecan-12-one

C26H36O5 (428.2562606)


   

triaconta-4,15,26-trien-1,29-diyne-3,28-diol

triaconta-4,15,26-trien-1,29-diyne-3,28-diol

C30H48O2 (440.36541079999995)


   

(1s,3'as,3'br,5'ar,6's,9'as,9'bs,11'as)-9'a-(hydroxymethyl)-3'b,6',11'a-trimethyl-2,5-dioxo-3'a,4',5',5'a,7',8',9',9'b,10',11'-decahydro-3'h-spiro[cyclohexane-1,2'-phenanthro[2,1-b]fura]-3-ene-6'-carboxylic acid

(1s,3'as,3'br,5'ar,6's,9'as,9'bs,11'as)-9'a-(hydroxymethyl)-3'b,6',11'a-trimethyl-2,5-dioxo-3'a,4',5',5'a,7',8',9',9'b,10',11'-decahydro-3'h-spiro[cyclohexane-1,2'-phenanthro[2,1-b]fura]-3-ene-6'-carboxylic acid

C26H36O6 (444.2511756)


   

5',10',14'-trimethyl-6',16'-dioxaspiro[cyclohexane-1,7'-pentacyclo[12.3.3.0¹,¹³.0²,¹⁰.0⁵,⁹]icosan]-3-ene-2,5,15'-trione

5',10',14'-trimethyl-6',16'-dioxaspiro[cyclohexane-1,7'-pentacyclo[12.3.3.0¹,¹³.0²,¹⁰.0⁵,⁹]icosan]-3-ene-2,5,15'-trione

C26H34O5 (426.24061140000003)


   

(1s,2s,5s,14s,15r,18r,19s)-10-methoxy-5,15,19-trimethyl-6,21-dioxahexacyclo[17.3.3.0¹,¹⁸.0²,¹⁵.0⁵,¹⁴.0⁷,¹²]pentacosa-7,9,11-trien-20-one

(1s,2s,5s,14s,15r,18r,19s)-10-methoxy-5,15,19-trimethyl-6,21-dioxahexacyclo[17.3.3.0¹,¹⁸.0²,¹⁵.0⁵,¹⁴.0⁷,¹²]pentacosa-7,9,11-trien-20-one

C27H36O4 (424.2613456)