NCBI Taxonomy: 2304096

Ampelopsideae (ncbi_taxid: 2304096)

found 79 associated metabolites at tribe taxonomy rank level.

Ancestor: Vitaceae

Child Taxonomies: Nekemias, Ampelopsis, Rhoicissus, Clematicissus

Catechin

(2R,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O6 (290.079)


Catechin, also known as cyanidanol or catechuic acid, belongs to the class of organic compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Catechin also belongs to the group of compounds known as flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids. Catechin is one of the 4 catechin known diastereoisomers. Two of the isomers are in trans configuration and are called catechin and the other two are in cis configuration and are called epicatechin. The most common catechin isomer is the (+)-catechin. The other stereoisomer is (-)-catechin or ent-catechin. The most common epicatechin isomer is (-)-epicatechin. Catechin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Catechin is a bitter tasting compound and is associated with the bitterness in tea. Catechin is a plant secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Catechin is an antioxidant flavonoid, occurring especially in woody plants as both Catechin and (-)-Catechin (cis) forms. Outside of the human body, Catechin is found, on average, in the highest concentration in foods, such as blackcurrants (Ribes nigrum), evergreen blackberries (Rubus laciniatus), and blackberries (Rubus) and in a lower concentration in dills (Anethum graveolens), hot chocolates, and medlars (Mespilus germanica). Catechin has also been detected, but not quantified in, several different foods, such as rice (Oryza sativa), apple ciders, peanuts (Arachis hypogaea), fruit juices, and red teas. This could make catechin a potential biomarker for the consumption of these foods. Based on a literature review a significant number of articles have been published on Catechin. (+)-catechin is the (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. It has a role as an antioxidant and a plant metabolite. It is an enantiomer of a (-)-catechin. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Cianidanol is a natural product found in Visnea mocanera, Salacia chinensis, and other organisms with data available. Catechin is a metabolite found in or produced by Saccharomyces cerevisiae. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Gallocatechin (related); Crofelemer (monomer of); Bilberry (part of) ... View More ... Present in red wine. Widespread in plants; found in a variety of foodstuffs especies apricots, broad beans, cherries, chocolate, grapes, nectarines, red wine, rhubarb, strawberries and tea The (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. Catechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=154-23-4 (retrieved 2024-07-12) (CAS RN: 154-23-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

Gallic acid

3,4,5-trihydroxybenzoic acid

C7H6O5 (170.0215)


Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

Resveratrol

(E)-5-(2-(4-hydroxyphenyl)ethenyl)-1,3-benzenediol(E)-5-(2-(4-hydroxyphenyl)ethenyl)-1,3-benzenediol

C14H12O3 (228.0786)


Resveratrol is a stilbenol that is stilbene in which the phenyl groups are substituted at positions 3, 5, and 4 by hydroxy groups. It has a role as a phytoalexin, an antioxidant, a glioma-associated oncogene inhibitor and a geroprotector. It is a stilbenol, a polyphenol and a member of resorcinols. Resveratrol (3,5,4-trihydroxystilbene) is a polyphenolic phytoalexin. It is a stilbenoid, a derivate of stilbene, and is produced in plants with the help of the enzyme stilbene synthase. It exists as cis-(Z) and trans-(E) isomers. The trans- form can undergo isomerisation to the cis- form when heated or exposed to ultraviolet irradiation. In a 2004 issue of Science, Dr. Sinclair of Harvard University said resveratrol is not an easy molecule to protect from oxidation. It has been claimed that it is readily degraded by exposure to light, heat, and oxygen. However, studies find that Trans-resveratrol undergoes negligible oxidation in normal atmosphere at room temperature. Resveratrol is a plant polyphenol found in high concentrations in red grapes that has been proposed as a treatment for hyperlipidemia and to prevent fatty liver, diabetes, atherosclerosis and aging. Resveratrol use has not been associated with serum enzyme elevations or with clinically apparent liver injury. Resveratrol is a natural product found in Vitis rotundifolia, Vitis amurensis, and other organisms with data available. Resveratrol is a phytoalexin derived from grapes and other food products with antioxidant and potential chemopreventive activities. Resveratrol induces phase II drug-metabolizing enzymes (anti-initiation activity); mediates anti-inflammatory effects and inhibits cyclooxygenase and hydroperoxidase functions (anti-promotion activity); and induces promyelocytic leukemia cell differentiation (anti-progression activity), thereby exhibiting activities in three major steps of carcinogenesis. This agent may inhibit TNF-induced activation of NF-kappaB in a dose- and time-dependent manner. (NCI05) Resveratrol is a metabolite found in or produced by Saccharomyces cerevisiae. A stilbene and non-flavonoid polyphenol produced by various plants including grapes and blueberries. It has anti-oxidant, anti-inflammatory, cardioprotective, anti-mutagenic, and anti-carcinogenic properties. It also inhibits platelet aggregation and the activity of several DNA HELICASES in vitro. Resveratrol is a polyphenolic phytoalexin. It is also classified as a stilbenoid, a derivate of stilbene, and is produced in plants with the help of the enzyme stilbene synthase. The levels of resveratrol found in food vary greatly. Red wine contains between 0.2 and 5.8 mg/L depending on the grape variety, while white wine has much less. The reason for this difference is that red wine is fermented with grape skins, allowing the wine to absorb the resveratrol, whereas white wine is fermented after the skin has been removed. Resveratrol is also sold as a nutritional supplement. A number of beneficial health effects, such as anti-cancer, antiviral, neuroprotective, anti-aging, anti-inflammatory, and life-prolonging effects have been reported for resveratrol. The fact that resveratrol is found in the skin of red grapes and as a constituent of red wine may explain the "French paradox". This paradox is based on the observation that the incidence of coronary heart disease is relatively low in southern France despite high dietary intake of saturated fats. Resveratrol is thought to achieve these cardioprotective effects by a number of different routes: (1) inhibition of vascular cell adhesion molecule expression; (2) inhibition of vascular smooth muscle cell proliferation; (3) stimulation of endothelial nitric oxide synthase (eNOS) activity; (4) inhibition of platelet aggregation; and (5) inhibition of LDL peroxidation (PMID: 17875315, 14676260, 9678525). Resveratrol is a biomarker for the consumption of grapes and raisins. A stilbenol that is stilbene in which the phenyl groups are substituted at positions 3, 5, and 4 by hydroxy groups. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9638; ORIGINAL_PRECURSOR_SCAN_NO 9635 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9646; ORIGINAL_PRECURSOR_SCAN_NO 9641 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9607; ORIGINAL_PRECURSOR_SCAN_NO 9606 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9642; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4383; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4396; ORIGINAL_PRECURSOR_SCAN_NO 4394 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4376 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9641; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4375; ORIGINAL_PRECURSOR_SCAN_NO 4373 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9614; ORIGINAL_PRECURSOR_SCAN_NO 9611 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4398; ORIGINAL_PRECURSOR_SCAN_NO 4397 IPB_RECORD: 1781; CONFIDENCE confident structure IPB_RECORD: 321; CONFIDENCE confident structure Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.0427)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Octacosanoic acid

Octacosanoic acid, puriss., synthetic, >=98.5\\% (GC)

C28H56O2 (424.428)


Octacosanoic acid is a very-long-chain fatty acid found in human brain and visceral organs (PMID:2474624). Octacosanoic acid is a higher aliphatic primary acids purified from sugar-cane (Saccharum officinarum L.) wax that has been shown to inhibit platelet aggregation induced ex vivo by addition of agonists to platelet-rich plasma (PRP) of rats, guinea pigs, and healthy human volunteers. (PMID:5099499). Octacosanoic acid is formed from octacosanol via beta-oxidation. (PMID:15847942). Octacosanoic acid is a straight-chain saturated fatty acid that is octacosane in which one of the terminal methyl groups has been oxidised to the corresponding carboxy group. It has a role as a plant metabolite. It is a straight-chain saturated fatty acid and an ultra-long-chain fatty acid. It is a conjugate acid of an octacosanoate. Octacosanoic acid is a natural product found in Lysimachia patungensis, Rhizophora apiculata, and other organisms with data available. A straight-chain saturated fatty acid that is octacosane in which one of the terminal methyl groups has been oxidised to the corresponding carboxy group. Octacosanoic acid is a very-long-chain fatty acid found in human brain and visceral organs (PMID: 2474624)

   

Myricetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-

C15H10O8 (318.0376)


Myricetin, also known as cannabiscetin or myricetol, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, myricetin is considered to be a flavonoid lipid molecule. A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. Myricetin is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Myricetin is found, on average, in the highest concentration within a few different foods, such as common walnuts, carobs, and fennels and in a lower concentration in welsh onions, yellow bell peppers, and jutes. Myricetin has also been detected, but not quantified in several different foods, such as napa cabbages, sesames, mixed nuts, lichee, and garden cress. Myricetin is a hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. It has been isolated from the leaves of Myrica rubra and other plants. It has a role as a cyclooxygenase 1 inhibitor, an antineoplastic agent, an antioxidant, a plant metabolite, a food component, a hypoglycemic agent and a geroprotector. It is a hexahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a myricetin(1-). Myricetin is a natural product found in Ficus auriculata, Visnea mocanera, and other organisms with data available. Myricetin is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Quercetin (related). Flavanol found in a wide variety of foodstuffs especially in red table wine, bee pollen, bilberries, blueberries, bog whortleberries, broad beans, Chinese bajberry, corn poppy leaves, cranberries, crowberries, blackcurrants, dock leaves, fennel, grapes, parsley, perilla, rutabaga, dill weed and tea (green and black). Glycosides are also widely distributed. Potential nutriceutical showing anti-HIV activity A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. It has been isolated from the leaves of Myrica rubra and other plants. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Raw Data] CB066_Myricetin_pos_30eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_20eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_40eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_50eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_10eV_CB000028.txt [Raw Data] CB066_Myricetin_neg_10eV_000019.txt [Raw Data] CB066_Myricetin_neg_40eV_000019.txt [Raw Data] CB066_Myricetin_neg_50eV_000019.txt [Raw Data] CB066_Myricetin_neg_20eV_000019.txt [Raw Data] CB066_Myricetin_neg_30eV_000019.txt Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities.

   

trans-Piceid

(2S,3R,4S,5S,6R)-2-{3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O8 (390.1315)


trans-Piceid is found in alcoholic beverages. trans-Piceid is present in grapeskins and red wine. It is isolated from Polygonum cuspidatum (Japanese knotweed).Piceid is a stilbenoid glucoside and is a major resveratrol derivative in grape juices (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.

   

Pentacosane

2A4605C9-A088-458C-AD58-AA987FF6C408

C25H52 (352.4069)


Constituent of many naturally occurring waxes. A colorless solid at ambient conditions. Pentacosane is an alkane consisting of an unbranched chain of 25 carbon atoms. It has a role as a semiochemical and a plant metabolite. Pentacosane is a natural product found in Cryptotermes brevis, Erucaria microcarpa, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). An alkane consisting of an unbranched chain of 25 carbon atoms. Pentacosane is one of the major components in the acetone extract from Curcuma raktakanda and is also in the essential oil from the leaves of Malus domestica. Pentacosane exhibit anti-cancer activities[1]. Pentacosane is one of the major components in the acetone extract from Curcuma raktakanda and is also in the essential oil from the leaves of Malus domestica. Pentacosane exhibit anti-cancer activities[1].

   

Phenethyl rutinoside

2-methyl-6-{[3,4,5-trihydroxy-6-(2-phenylethoxy)oxan-2-yl]methoxy}oxane-3,4,5-triol

C20H30O10 (430.1839)


Phenethyl rutinoside is found in citrus. Phenethyl rutinoside is isolated from Citrus unshiu (Satsuma mandarin Isolated from Citrus unshiu (Satsuma mandarin). Phenethyl rutinoside is found in citrus and pomegranate.

   

Ampelopsin D

(1Z)-3-(3,5-dihydroxyphenyl)-2-(4-hydroxyphenyl)-1-[(4-hydroxyphenyl)methylidene]-2,3-dihydro-1H-indene-4,6-diol

C28H22O6 (454.1416)


Ampelopsin D is found in alcoholic beverages. Ampelopsin D is a constituent of Vitis vinifera (wine grape). Constituent of Vitis vinifera (wine grape). Ampelopsin D is found in alcoholic beverages and fruits.

   

(Z)-Resveratrol 4'-glucoside

2-{4-[(Z)-2-(3,5-dihydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O8 (390.1315)


(Z)-Resveratrol 4-glucoside is found in alcoholic beverages. (Z)-Resveratrol 4-glucoside is a constituent of the wine grape (Vitis vinifera) Constituent of the wine grape (Vitis vinifera). (Z)-Resveratrol 4-glucoside is found in alcoholic beverages and fruits.

   

cis-Piceid

(2S,3R,4S,5S,6R)-2-{3-hydroxy-5-[(Z)-2-(4-hydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O8 (390.1315)


Constituent of the wine grape (Vitis vinifera). (Z)-Resveratrol 3-glucoside is found in fruits and common grape. cis-Piceid is found in common grape. cis-Piceid is a constituent of the wine grape (Vitis vinifera)

   

Viniferol D

2-(3,5-dihydroxyphenyl)-3,9,17-tris(4-hydroxyphenyl)-8-oxapentacyclo[8.7.2.0⁴,¹⁸.0⁷,¹⁹.0¹¹,¹⁶]nonadeca-4,6,11,13,15,18-hexaene-5,13,15-triol

C42H32O9 (680.2046)


   

beta-Phenylethanol beta-D-rutinoside

(2S,3R,4R,5R,6R)-2-methyl-6-{[(2R,3S,4S,5R,6R)-3,4,5-trihydroxy-6-(2-phenylethoxy)oxan-2-yl]methoxy}oxane-3,4,5-triol

C20H30O10 (430.1839)


Beta-phenylethanol beta-d-rutinoside is a member of the class of compounds known as O-glycosyl compounds. O-glycosyl compounds are glycoside in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Beta-phenylethanol beta-d-rutinoside is soluble (in water) and a very weakly acidic compound (based on its pKa). Beta-phenylethanol beta-d-rutinoside can be found in common grape, which makes beta-phenylethanol beta-d-rutinoside a potential biomarker for the consumption of this food product.

   

Pallidol

8,16-bis(4-hydroxyphenyl)tetracyclo[7.7.0.0²,⁷.0¹⁰,¹⁵]hexadeca-2,4,6,10(15),11,13-hexaene-4,6,12,14-tetrol

C28H22O6 (454.1416)


Pallidol is a member of the class of compounds known as indanes. Indanes are compounds containing an indane moiety, which consists of a cyclopentane fused to a benzene ring. Pallidol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Pallidol can be found in grape wine, which makes pallidol a potential biomarker for the consumption of this food product. Pallidol is a resveratrol dimer. It can be found in red wine, in Cissus pallida or in Parthenocissus laetevirens .

   

Piceatannol

4-[(Z)-2-(3,5-dihydroxyphenyl)ethenyl]benzene-1,2-diol

C14H12O4 (244.0736)


Piceatannol, also known as (Z)-3,5,3,4-tetrahydroxystilbene, is a member of the class of compounds known as stilbenes. Stilbenes are organic compounds containing a 1,2-diphenylethylene moiety. Stilbenes (C6-C2-C6 ) are derived from the common phenylpropene (C6-C3) skeleton building block. The introduction of one or more hydroxyl groups to a phenyl ring lead to stilbenoids. Piceatannol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Piceatannol can be synthesized from cis-stilbene. Piceatannol can also be synthesized into cis-astringin. Piceatannol can be found in common grape and grape wine, which makes piceatannol a potential biomarker for the consumption of these food products. Piceatannol is a stilbenoid, a type of phenolic compound .

   

Pelargonidin 3-O-glucoside

(1Z,2R,3R)-2-(3,5-dihydroxyphenyl)-3-(4-hydroxyphenyl)-1-[(4-hydroxyphenyl)methylidene]-2,3-dihydro-1H-indene-4,6-diol

C28H22O6 (454.1416)


   

Resveratrol

3,4,5-Trihydroxystilbene

C14H12O3 (228.0786)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; EAWAG_UCHEM_ID 3241 C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.0427)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

gallocatechol

2H-1-Benzopyran-3,5,7-triol, 3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-, (2R,3S)-rel-

C15H14O7 (306.0739)


(-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].

   

Dihydromyricetin

trans-3,3,4,5,5,7-Hexahydroxyflavanone

C15H12O8 (320.0532)


A hexahydroxyflavanone that is the 2,3-dihydro derivative of myricetin. Dihydromyricetin, also known as ampelopsin or (2r,3r)-3,5,7,3,4,5-hexahydroxyflavanone, is a member of the class of compounds known as epigallocatechins. Epigallocatechins are compounds containing epigallocatechin or a derivative. Epigallocatechin is a flavan-3-ol containing a benzopyran-3,5,7-triol linked to a 3,4,5-hydroxyphenyl moiety. Dihydromyricetin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Dihydromyricetin can be found in a number of food items such as highbush blueberry, summer grape, sacred lotus, and sweet rowanberry, which makes dihydromyricetin a potential biomarker for the consumption of these food products. Hovenia dulcis has been used in traditional Japanese, Chinese, and Korean medicines to treat fever, parasitic infection, as a laxative, and a treatment of liver diseases, and as a hangover treatment. Methods have been developed to extract ampelopsin from it at large scales, and laboratory research has been conducted with the compound to see if it might be useful as a drug in any of the conditions for which the parent plant has been traditionally used . Isolated from flowers of Eugenia jambolana (jambolan). trans-3,3,4,5,5,7-Hexahydroxyflavanone is found in fruits. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.

   

Pentacosane

EINECS 211-123-6

C25H52 (352.4069)


Pentacosane is one of the major components in the acetone extract from Curcuma raktakanda and is also in the essential oil from the leaves of Malus domestica. Pentacosane exhibit anti-cancer activities[1]. Pentacosane is one of the major components in the acetone extract from Curcuma raktakanda and is also in the essential oil from the leaves of Malus domestica. Pentacosane exhibit anti-cancer activities[1].

   

pallidol

pallidol

C28H22O6 (454.1416)


A tetracyclic stilbenoid that is a homodimer obtained by cyclodimerisation of resveratrol.

   

Resveratroloside

(2S,3R,4S,5S,6R)-2-[4-[(E)-2-(3,5-dihydroxyphenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C20H22O8 (390.1315)


Resveratroloside is a natural product found in Vitis vinifera, Pinus sylvestris, and other organisms with data available.

   

Resveratrol

trans-resveratrol

C14H12O3 (228.0786)


Resveratrol, also known as 3,4,5-trihydroxystilbene or trans-resveratrol, is a member of the class of compounds known as stilbenes. Stilbenes are organic compounds containing a 1,2-diphenylethylene moiety. Stilbenes (C6-C2-C6 ) are derived from the common phenylpropene (C6-C3) skeleton building block. The introduction of one or more hydroxyl groups to a phenyl ring lead to stilbenoids. Thus, resveratrol is considered to be an aromatic polyketide lipid molecule. Resveratrol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Resveratrol is a bitter tasting compound and can be found in a number of food items such as broccoli, yellow wax bean, bilberry, and turnip, which makes resveratrol a potential biomarker for the consumption of these food products. Resveratrol can be found primarily in urine, as well as throughout most human tissues. Resveratrol exists in all eukaryotes, ranging from yeast to humans. Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a stilbenoid, a type of natural phenol, and a phytoalexin produced by several plants in response to injury or, when the plant is under attack by pathogens such as bacteria or fungi. Sources of resveratrol in food include the skin of grapes, blueberries, raspberries, mulberries . Resveratrol suppresses NF-kappaB (NF-kappaB) activation in HSV infected cells. Reports have indicated that HSV activates NF-kappaB during productive infection and this may be an essential aspect of its replication scheme [PMID: 9705914] (DrugBank). relative retention time with respect to 9-anthracene Carboxylic Acid is 0.738 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.740 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.730 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.733 Acquisition and generation of the data is financially supported by the Max-Planck-Society COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS IPB_RECORD: 2101; CONFIDENCE confident structure IPB_RECORD: 2901; CONFIDENCE confident structure Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].

   

Myricetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)- (9CI)

C15H10O8 (318.0376)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.783 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.784 Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities.

   

Piceatannol

1,2-Benzenediol, {4-[2-(3,} 5-dihydroxyphenyl)ethenyl]-, (E)-

C14H12O4 (244.0736)


C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4]. Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4].

   

piceid

(2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C20H22O8 (390.1315)


Origin: Plant, Glucosides, Stilbenes (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.

   

epicatechin gallate

epicatechin gallate

C22H18O10 (442.09)


(-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 7.5 μM. (-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 7.5 μM. (-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 7.5 μM. (-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 7.5 μM.

   

cis-Piceid

(2S,3R,4S,5S,6R)-2-{3-hydroxy-5-[(Z)-2-(4-hydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O8 (390.1315)


A stilbenoid that is cis-resveratrol substituted at position 3 by a beta-D-glucosyl residue.

   

ampelopsin

(1Z)-3-(3,5-dihydroxyphenyl)-2-(4-hydroxyphenyl)-1-[(4-hydroxyphenyl)methylidene]-2,3-dihydro-1H-indene-4,6-diol

C28H22O6 (454.1416)


   

C30:0

TRIACONTANOIC ACID

C30H60O2 (452.4593)


   

Quadrangularin A

Quadrangularin A

C28H22O6 (454.1416)


An indane-derived stilbenoid that is a homodimer obtained by cyclodimerisation of resveratrol.

   

Ampelopsin B

Ampelopsin B

C28H22O6 (454.1416)


A heterotetracyclic stilbenoid that is a homodimer obtained by cyclodimerisation of resveratrol.

   

GALOP

InChI=1\C7H6O5\c8-4-1-3(7(11)12)2-5(9)6(4)10\h1-2,8-10H,(H,11,12

C7H6O5 (170.0215)


C26170 - Protective Agent > C275 - Antioxidant Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

2-[3-Hydroxy-5-[2-(4-hydroxyphenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

2-[3-Hydroxy-5-[2-(4-hydroxyphenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C20H22O8 (390.1315)


   

(1r,4r,5s,11r,12r,15s,16r,22r)-4,15-bis(3,5-dihydroxyphenyl)-5,11,16,22-tetrakis(4-hydroxyphenyl)-6,17-dioxahexacyclo[10.10.0.0²,¹⁰.0³,⁷.0¹³,²¹.0¹⁴,¹⁸]docosa-2,7,9,13,18,20-hexaene-9,20-diol

(1r,4r,5s,11r,12r,15s,16r,22r)-4,15-bis(3,5-dihydroxyphenyl)-5,11,16,22-tetrakis(4-hydroxyphenyl)-6,17-dioxahexacyclo[10.10.0.0²,¹⁰.0³,⁷.0¹³,²¹.0¹⁴,¹⁸]docosa-2,7,9,13,18,20-hexaene-9,20-diol

C56H42O12 (906.2676)


   

(2s,3r,4s,5r,6r)-2-{4-[(1e)-2-(3,5-dihydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5r,6r)-2-{4-[(1e)-2-(3,5-dihydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O8 (390.1315)


   

(2s,3r,4s,5s,6r)-2-(4-hydroxy-3-methoxyphenoxy)-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-(4-hydroxy-3-methoxyphenoxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C13H18O8 (302.1002)


   

7-hydroxy-3-(7-methoxy-2h-1,3-benzodioxol-5-yl)-6-{[(2s,3r,4s,5s,6s)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

7-hydroxy-3-(7-methoxy-2h-1,3-benzodioxol-5-yl)-6-{[(2s,3r,4s,5s,6s)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

C28H30O16 (622.1534)


   

(1z,2s,3s)-3-(3,5-dihydroxyphenyl)-2-(4-hydroxyphenyl)-1-[(4-hydroxyphenyl)methylidene]-2,3-dihydroindene-4,6-diol

(1z,2s,3s)-3-(3,5-dihydroxyphenyl)-2-(4-hydroxyphenyl)-1-[(4-hydroxyphenyl)methylidene]-2,3-dihydroindene-4,6-diol

C28H22O6 (454.1416)


   

(4s,5r)-4-hydroxy-3,3,5-trimethyl-4-[(1e,3s)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl]cyclohexan-1-one

(4s,5r)-4-hydroxy-3,3,5-trimethyl-4-[(1e,3s)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl]cyclohexan-1-one

C19H32O8 (388.2097)


   

(1e,2r,3r)-3-(3,5-dihydroxyphenyl)-2-(4-hydroxyphenyl)-1-[(4-hydroxyphenyl)methylidene]-2,3-dihydroindene-4,6-diol

(1e,2r,3r)-3-(3,5-dihydroxyphenyl)-2-(4-hydroxyphenyl)-1-[(4-hydroxyphenyl)methylidene]-2,3-dihydroindene-4,6-diol

C28H22O6 (454.1416)


   

(1s,8r,9s,16r)-8,16-bis(4-hydroxyphenyl)tetracyclo[7.7.0.0²,⁷.0¹⁰,¹⁵]hexadeca-2,4,6,10,12,14-hexaene-4,6,12,14-tetrol

(1s,8r,9s,16r)-8,16-bis(4-hydroxyphenyl)tetracyclo[7.7.0.0²,⁷.0¹⁰,¹⁵]hexadeca-2,4,6,10,12,14-hexaene-4,6,12,14-tetrol

C28H22O6 (454.1416)


   

cyphostemmin b

cyphostemmin b

C28H22O6 (454.1416)


   

4-(3,5-dihydroxyphenyl)-5,18,19-tris(4-hydroxyphenyl)-6-oxapentacyclo[9.7.1.0²,¹⁰.0³,⁷.0¹²,¹⁷]nonadeca-2,7,9,12,14,16-hexaene-9,14,16-triol

4-(3,5-dihydroxyphenyl)-5,18,19-tris(4-hydroxyphenyl)-6-oxapentacyclo[9.7.1.0²,¹⁰.0³,⁷.0¹²,¹⁷]nonadeca-2,7,9,12,14,16-hexaene-9,14,16-triol

C42H32O9 (680.2046)


   

4-hydroxy-3,3,5-trimethyl-4-(3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl)cyclohexan-1-one

4-hydroxy-3,3,5-trimethyl-4-(3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl)cyclohexan-1-one

C19H32O8 (388.2097)


   

(2r,3r,4s,5r)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-3-(hydroxymethyl)-6,8-dimethoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

(2r,3r,4s,5r)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-3-(hydroxymethyl)-6,8-dimethoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

C27H36O12 (552.2207)


   

4,15-bis(3,5-dihydroxyphenyl)-5,11,16,22-tetrakis(4-hydroxyphenyl)-6,17-dioxahexacyclo[10.10.0.0²,¹⁰.0³,⁷.0¹³,²¹.0¹⁴,¹⁸]docosa-2,7,9,13,18,20-hexaene-9,20-diol

4,15-bis(3,5-dihydroxyphenyl)-5,11,16,22-tetrakis(4-hydroxyphenyl)-6,17-dioxahexacyclo[10.10.0.0²,¹⁰.0³,⁷.0¹³,²¹.0¹⁴,¹⁸]docosa-2,7,9,13,18,20-hexaene-9,20-diol

C56H42O12 (906.2676)


   

5-[(5r,6r,10s,11s)-10-(3,5-dihydroxyphenyl)-5,11-bis(4-hydroxyphenyl)-8-[(1z)-2-(4-hydroxyphenyl)ethenyl]-4,12-dioxatricyclo[7.3.0.0³,⁷]dodeca-1,3(7),8-trien-6-yl]benzene-1,3-diol

5-[(5r,6r,10s,11s)-10-(3,5-dihydroxyphenyl)-5,11-bis(4-hydroxyphenyl)-8-[(1z)-2-(4-hydroxyphenyl)ethenyl]-4,12-dioxatricyclo[7.3.0.0³,⁷]dodeca-1,3(7),8-trien-6-yl]benzene-1,3-diol

C42H32O9 (680.2046)


   

(1r,8r,9s,16r)-8,16-bis(4-hydroxyphenyl)tetracyclo[7.6.1.0²,⁷.0¹⁰,¹⁵]hexadeca-2,4,6,10,12,14-hexaene-4,6,12,14-tetrol

(1r,8r,9s,16r)-8,16-bis(4-hydroxyphenyl)tetracyclo[7.6.1.0²,⁷.0¹⁰,¹⁵]hexadeca-2,4,6,10,12,14-hexaene-4,6,12,14-tetrol

C28H22O6 (454.1416)


   

ampelopsin a

ampelopsin a

C28H22O7 (470.1365)


   

(1r,2s,3s,9r,10r,17r)-2-(3,5-dihydroxyphenyl)-3,9,17-tris(4-hydroxyphenyl)-8-oxapentacyclo[8.7.2.0⁴,¹⁸.0⁷,¹⁹.0¹¹,¹⁶]nonadeca-4,6,11,13,15,18-hexaene-5,13,15-triol

(1r,2s,3s,9r,10r,17r)-2-(3,5-dihydroxyphenyl)-3,9,17-tris(4-hydroxyphenyl)-8-oxapentacyclo[8.7.2.0⁴,¹⁸.0⁷,¹⁹.0¹¹,¹⁶]nonadeca-4,6,11,13,15,18-hexaene-5,13,15-triol

C42H32O9 (680.2046)


   

(2s,3r,4s,5s,6r)-2-(4-hydroxy-2-methoxyphenoxy)-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-(4-hydroxy-2-methoxyphenoxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C13H18O8 (302.1002)


   

(1r,8r,16r)-8,16-bis(4-hydroxyphenyl)-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,10,12,14(17)-hexaene-4,6,12-triol

(1r,8r,16r)-8,16-bis(4-hydroxyphenyl)-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,10,12,14(17)-hexaene-4,6,12-triol

C28H22O6 (454.1416)


   

5-{6-hydroxy-4-[6-hydroxy-2-(4-hydroxyphenyl)-4-[(1e)-2-(4-hydroxyphenyl)ethenyl]-2,3-dihydro-1-benzofuran-3-yl]-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzofuran-3-yl}benzene-1,3-diol

5-{6-hydroxy-4-[6-hydroxy-2-(4-hydroxyphenyl)-4-[(1e)-2-(4-hydroxyphenyl)ethenyl]-2,3-dihydro-1-benzofuran-3-yl]-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzofuran-3-yl}benzene-1,3-diol

C42H32O9 (680.2046)


   

(2s,3r,4s,5r,6r)-2-{3-hydroxy-5-[(1e)-2-(4-hydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5r,6r)-2-{3-hydroxy-5-[(1e)-2-(4-hydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O8 (390.1315)


   

(1s,4s,5s,11r,18s,19r)-4-(3,5-dihydroxyphenyl)-5,18,19-tris(4-hydroxyphenyl)-6-oxapentacyclo[9.7.1.0²,¹⁰.0³,⁷.0¹²,¹⁷]nonadeca-2,7,9,12,14,16-hexaene-9,14,16-triol

(1s,4s,5s,11r,18s,19r)-4-(3,5-dihydroxyphenyl)-5,18,19-tris(4-hydroxyphenyl)-6-oxapentacyclo[9.7.1.0²,¹⁰.0³,⁷.0¹²,¹⁷]nonadeca-2,7,9,12,14,16-hexaene-9,14,16-triol

C42H32O9 (680.2046)


   

5-[(2s,3r)-6-hydroxy-4-[(2r,3s)-6-hydroxy-2-(4-hydroxyphenyl)-4-[(1e)-2-(4-hydroxyphenyl)ethenyl]-2,3-dihydro-1-benzofuran-3-yl]-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzofuran-3-yl]benzene-1,3-diol

5-[(2s,3r)-6-hydroxy-4-[(2r,3s)-6-hydroxy-2-(4-hydroxyphenyl)-4-[(1e)-2-(4-hydroxyphenyl)ethenyl]-2,3-dihydro-1-benzofuran-3-yl]-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzofuran-3-yl]benzene-1,3-diol

C42H32O9 (680.2046)


   

5-[(5r,6r,10s,11s)-10-(3,5-dihydroxyphenyl)-5,11-bis(4-hydroxyphenyl)-8-[(1e)-2-(4-hydroxyphenyl)ethenyl]-4,12-dioxatricyclo[7.3.0.0³,⁷]dodeca-1,3(7),8-trien-6-yl]benzene-1,3-diol

5-[(5r,6r,10s,11s)-10-(3,5-dihydroxyphenyl)-5,11-bis(4-hydroxyphenyl)-8-[(1e)-2-(4-hydroxyphenyl)ethenyl]-4,12-dioxatricyclo[7.3.0.0³,⁷]dodeca-1,3(7),8-trien-6-yl]benzene-1,3-diol

C42H32O9 (680.2046)


   

(1r,8s,9s,16r)-8,16-bis(4-hydroxyphenyl)tetracyclo[7.6.1.0²,⁷.0¹⁰,¹⁵]hexadeca-2,4,6,10,12,14-hexaene-4,6,12,14-tetrol

(1r,8s,9s,16r)-8,16-bis(4-hydroxyphenyl)tetracyclo[7.6.1.0²,⁷.0¹⁰,¹⁵]hexadeca-2,4,6,10,12,14-hexaene-4,6,12,14-tetrol

C28H22O6 (454.1416)


   

7-hydroxy-3-(7-methoxy-2h-1,3-benzodioxol-5-yl)-6-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

7-hydroxy-3-(7-methoxy-2h-1,3-benzodioxol-5-yl)-6-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C23H22O12 (490.1111)


   

8,16-bis(4-hydroxyphenyl)tetracyclo[7.6.1.0²,⁷.0¹⁰,¹⁵]hexadeca-2,4,6,10,12,14-hexaene-4,6,12,14-tetrol

8,16-bis(4-hydroxyphenyl)tetracyclo[7.6.1.0²,⁷.0¹⁰,¹⁵]hexadeca-2,4,6,10,12,14-hexaene-4,6,12,14-tetrol

C28H22O6 (454.1416)


   

(1s,4s,5s,11r,18s,19s)-4-(3,5-dihydroxyphenyl)-5,18,19-tris(4-hydroxyphenyl)-6-oxapentacyclo[9.7.1.0²,¹⁰.0³,⁷.0¹²,¹⁷]nonadeca-2,7,9,12,14,16-hexaene-9,14,16-triol

(1s,4s,5s,11r,18s,19s)-4-(3,5-dihydroxyphenyl)-5,18,19-tris(4-hydroxyphenyl)-6-oxapentacyclo[9.7.1.0²,¹⁰.0³,⁷.0¹²,¹⁷]nonadeca-2,7,9,12,14,16-hexaene-9,14,16-triol

C42H32O9 (680.2046)


   

(2r,3r,4s,5s,6r)-2-{3-hydroxy-5-[(1e)-2-(4-hydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{3-hydroxy-5-[(1e)-2-(4-hydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O8 (390.1315)


   

5-[10-(3,5-dihydroxyphenyl)-5,11-bis(4-hydroxyphenyl)-8-[2-(4-hydroxyphenyl)ethenyl]-4,12-dioxatricyclo[7.3.0.0³,⁷]dodeca-1,3(7),8-trien-6-yl]benzene-1,3-diol

5-[10-(3,5-dihydroxyphenyl)-5,11-bis(4-hydroxyphenyl)-8-[2-(4-hydroxyphenyl)ethenyl]-4,12-dioxatricyclo[7.3.0.0³,⁷]dodeca-1,3(7),8-trien-6-yl]benzene-1,3-diol

C42H32O9 (680.2046)


   

1-{2-[(1,3-dihydroxypropan-2-yl)oxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl}ethanone

1-{2-[(1,3-dihydroxypropan-2-yl)oxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl}ethanone

C17H24O9 (372.142)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

(1r,8r,9s,16r)-8,16-bis(4-hydroxyphenyl)-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,10,12,14(17)-hexaene-4,6,9,12-tetrol

(1r,8r,9s,16r)-8,16-bis(4-hydroxyphenyl)-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,10,12,14(17)-hexaene-4,6,9,12-tetrol

C28H22O7 (470.1365)


   

(2r,3r,4s,5s,6r)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H58O6 (574.4233)


   

(2r,3r,4s,5s,6r)-2-{[(3as,3bs,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(3as,3bs,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.439)


   

6,7-dihydroxy-3-(7-methoxy-2h-1,3-benzodioxol-5-yl)chromen-4-one

6,7-dihydroxy-3-(7-methoxy-2h-1,3-benzodioxol-5-yl)chromen-4-one

C17H12O7 (328.0583)


   

2-(3-{4-[(1,3-dihydroxypropan-2-yl)oxy]-3-methoxyphenyl}propoxy)-6-methyloxane-3,4,5-triol

2-(3-{4-[(1,3-dihydroxypropan-2-yl)oxy]-3-methoxyphenyl}propoxy)-6-methyloxane-3,4,5-triol

C19H30O9 (402.189)


   

trans-suffruticosol d

trans-suffruticosol d

C42H32O9 (680.2046)


   

(2r,3r,4s,5r)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

(2r,3r,4s,5r)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}oxane-3,4,5-triol

C25H32O10 (492.1995)


   

(2r,3r,4r,5r,6s)-2-(3-{4-[(1,3-dihydroxypropan-2-yl)oxy]-3-methoxyphenyl}propoxy)-6-methyloxane-3,4,5-triol

(2r,3r,4r,5r,6s)-2-(3-{4-[(1,3-dihydroxypropan-2-yl)oxy]-3-methoxyphenyl}propoxy)-6-methyloxane-3,4,5-triol

C19H30O9 (402.189)


   

7-hydroxy-3-(7-methoxy-2h-1,3-benzodioxol-5-yl)-6-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

7-hydroxy-3-(7-methoxy-2h-1,3-benzodioxol-5-yl)-6-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

C23H22O11 (474.1162)


   

tocilizumab

tocilizumab

C14H12O3 (228.0786)


   

3-(3,5-dihydroxyphenyl)-2-(4-hydroxyphenyl)-1-[(4-hydroxyphenyl)methylidene]-2,3-dihydroindene-4,6-diol

3-(3,5-dihydroxyphenyl)-2-(4-hydroxyphenyl)-1-[(4-hydroxyphenyl)methylidene]-2,3-dihydroindene-4,6-diol

C28H22O6 (454.1416)