NCBI Taxonomy: 2042659

Aconitum maximum (ncbi_taxid: 2042659)

found 3 associated metabolites at species taxonomy rank level.

Ancestor: Aconitum

Child Taxonomies: none taxonomy data.

Mesaconitine

[(1S,2R,3R,4R,5R,6S,7S,8R,9R,10S,13R,14R,16S,17S,18R)-8-acetyloxy-5,7,14-trihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-methyl-11-azahexacyclo[7.7.2.12,5.01,10.03,8.013,17]nonadecan-4-yl] benzoate

C33H45NO11 (631.2992)


Mesaconitine is a diterpenoid. Mesaconitine is a natural product found in Aconitum anthora, Aconitum napellus, and other organisms with data available. Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid Annotation level-1 Mesaconitine is the main active component of genus aconitum plants. IC50 value: Target: in vitro: In HUVECs, 30 microM mesaconitine increased the [Ca(2+)](i) level in the presence of extracellular CaCl(2) and NaCl, and the response was inhibited by KBR7943. Mesaconitine increased intracellular Na(+) concentration level in HUVECs. The [Ca(2+)](i) response by mesaconitine was inhibited by 100 microM D-tubocurarine [1]. Mesaconitine at 30 microM inhibited 3 microM phenylephrine-induced contraction in the endothelium-intact, but not endothelium-denuded, aortic rings [2]. MA promoted the alpha-MT-induced decrease in NE levels in hippocampus, medulla oblongata plus pons and spinal cord [3]. Mesaconitine is the main active component of genus aconitum plants. IC50 value: Target: in vitro: In HUVECs, 30 microM mesaconitine increased the [Ca(2+)](i) level in the presence of extracellular CaCl(2) and NaCl, and the response was inhibited by KBR7943. Mesaconitine increased intracellular Na(+) concentration level in HUVECs. The [Ca(2+)](i) response by mesaconitine was inhibited by 100 microM D-tubocurarine [1]. Mesaconitine at 30 microM inhibited 3 microM phenylephrine-induced contraction in the endothelium-intact, but not endothelium-denuded, aortic rings [2]. MA promoted the alpha-MT-induced decrease in NE levels in hippocampus, medulla oblongata plus pons and spinal cord [3].

   

Hypaconitine

(3S,6S,6aS,7R,7aR,8R,9R,10S,11S,11aR,12R,13R,14R)-11a-acetoxy-9,11-dihydroxy-6,10,13-trimethoxy-3-(methoxymethyl)-1-methyltetradecahydro-1H-3,6a,12-(epiethane[1,1,2]triyl)-7,9-methanonaphtho[2,3-b]azocin-8-yl benzoate

C33H45NO10 (615.3043)


Hypaconitine is a diterpenoid. Hypaconitine is a natural product found in Aconitum japonicum, Aconitum firmum, and other organisms with data available. Annotation level-1 Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo: Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo:

   

Ignavine

[(1R,3R,4R,5R,9S,11S,13R,16S,17R,18R)-4,13,18-trihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.01,8.05,17.07,16.09,14.014,18]nonadecan-3-yl] benzoate

C27H31NO5 (449.2202)