NCBI Taxonomy: 186273

Hylocereeae (ncbi_taxid: 186273)

found 48 associated metabolites at tribe taxonomy rank level.

Ancestor: Cactoideae

Child Taxonomies: Deamia, Kimnachia, Hylocereus, Epiphyllum, Disocactus, Selenicereus, Weberocereus, Pseudorhipsalis

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.153378)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Ferulic acid

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C10H10O4 (194.057906)


trans-Ferulic acid is a highly abundant phenolic phytochemical which is present in plant cell walls. Ferulic acid is a phenolic acid that can be absorbed by the small intestine and excreted through the urine. It is one of the most abundant phenolic acids in plants, varying from 5 g/kg in wheat bran to 9 g/kg in sugar-beet pulp and 50 g/kg in corn kernel. It occurs primarily in seeds and leaves both in its free form (albeit rarely) and covalently linked to lignin and other biopolymers. It is usually found as ester cross-links with polysaccharides in the cell wall, such as arabinoxylans in grasses, pectin in spinach and sugar beet, and xyloglucans in bamboo. It also can cross-link with proteins. Due to its phenolic nucleus and an extended side chain conjugation (carbohydrates and proteins), it readily forms a resonance-stabilized phenoxy radical which accounts for its potent antioxidant potential. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reducing oxidative damage and amyloid pathology in Alzheimer disease (PMID:17127365, 1398220, 15453708, 9878519). Ferulic acid can be found in Pseudomonas and Saccharomyces (PMID:8395165). Ferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. It has a role as an antioxidant, a MALDI matrix material, a plant metabolite, an anti-inflammatory agent, an apoptosis inhibitor and a cardioprotective agent. It is a conjugate acid of a ferulate. Ferulic acid is a natural product found in Haplophyllum griffithianum, Visnea mocanera, and other organisms with data available. Ferulic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Angelica sinensis root (part of). Widely distributed in plants, first isolated from Ferula foetida (asafoetida). Antioxidant used to inhibit oxidn. of fats, pastry products, etc. Antifungal agent used to prevent fruit spoilage. trans-Ferulic acid is found in many foods, some of which are deerberry, peach, shea tree, and common bean. A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H074 (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

(+)-taxifolin

(2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O7 (304.05830019999996)


Taxifolin, also known as dihydroquercetin or (+)-taxifolin, is a member of the class of compounds known as flavanonols. Flavanonols are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a hydroxyl group and a ketone at the carbon C2 and C3, respectively. Taxifolin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Taxifolin can be found in a number of food items such as sweet rowanberry, arrowroot, evening primrose, and walnut, which makes taxifolin a potential biomarker for the consumption of these food products. Taxifolin is a flavanonol, a type of flavonoid . D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2]. Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2].

   

Aromadendrin

4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(4-hydroxyphenyl)-, (2R-trans)-

C15H12O6 (288.0633852)


(+)-dihydrokaempferol is a tetrahydroxyflavanone having hydroxy groupa at the 3-, 4-, 5- and 7-positions. It has a role as a metabolite. It is a tetrahydroxyflavanone, a member of dihydroflavonols, a secondary alpha-hydroxy ketone and a member of 4-hydroxyflavanones. It is functionally related to a kaempferol. It is a conjugate acid of a (+)-dihydrokaempferol 7-oxoanion. Aromadendrin is a natural product found in Smilax corbularia, Ventilago leiocarpa, and other organisms with data available. See also: Acai fruit pulp (part of). Isolated from Citrus subspecies and many other plants. Aromadendrin is found in many foods, some of which are thistle, coriander, adzuki bean, and almond. Aromadendrin is found in citrus. Aromadendrin is isolated from Citrus species and many other plant A tetrahydroxyflavanone having hydroxy groupa at the 3-, 4-, 5- and 7-positions. Dihydrokaempferol is isolated from Bauhinia championii (Benth). Dihydrokaempferol induces apoptosis and inhibits Bcl-2 and Bcl-xL expression. Dihydrokaempferol is a good candidate for new antiarthritic agents[1]. Dihydrokaempferol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=480-20-6 (retrieved 2024-09-18) (CAS RN: 480-20-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Betanin

(1E)-1-{2-[(4E)-2,6-dicarboxy-1,2,3,4-tetrahydropyridin-4-ylidene]ethylidene}-6-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1H-1λ⁵-indol-1-ylium-2-carboxylate

C24H26N2O13 (550.1434826)


Isobetanin is found in red beetroot. Minor congener of Betanin, e.g. from beetroot and Amaranthus specie

   

Betanin

(2S)-1-[(2E)-2-[(2S)-2,6-dicarboxy-2,3-dihydro-1H-pyridin-4-ylidene]ethylidene]-6-hydroxy-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-indolin-1-ium-2-carboxylate

C24H26N2O13 (550.1434826)


   

Kaempferol 3-neohesperidoside

3-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C27H30O15 (594.158463)


Isolated from hop (Humulus lupulus). Kaempferol 3-neohesperidoside is found in soy bean, alcoholic beverages, and cereals and cereal products. Kaempferol 3-neohesperidoside is found in alcoholic beverages. Kaempferol 3-neohesperidoside is isolated from hop (Humulus lupulus). Kaempferol 3-neohesperidoside (Kaempferol 3-O-neohesperidoside) is a flavonoid[1]. Kaempferol 3-neohesperidoside exhibits insulinomimetic effect on the rat soleus muscle[2]. Kaempferol 3-neohesperidoside (Kaempferol 3-O-neohesperidoside) is a flavonoid[1]. Kaempferol 3-neohesperidoside exhibits insulinomimetic effect on the rat soleus muscle[2].

   

2-Phenylethyl beta-D-glucopyranoside

2-(hydroxymethyl)-6-(2-phenylethoxy)oxane-3,4,5-triol

C14H20O6 (284.125982)


2-Phenylethyl alpha-D-glucopyranoside is found in alcoholic beverages. 2-Phenylethyl alpha-D-glucopyranoside is isolated from Riesling grapes. 2-Phenylethyl beta-D-glucopyranoside is a constituent of Rosa damascena bulgaria (damask rose) and Vitis vinifera (wine grape).

   

(2R)-2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-2,3-dihydrochromen-4-one

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O7 (304.05830019999996)


Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2]. Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2].

   

Quercetin-3-o-rutinose

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C27H30O16 (610.153378)


   

Kaempferol 3-O-neohesperidoside

3-{[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C27H30O15 (594.158463)


Kaempferol 3-o-neohesperidoside is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-o-neohesperidoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-o-neohesperidoside can be found in soy bean, which makes kaempferol 3-o-neohesperidoside a potential biomarker for the consumption of this food product.

   

Betaine

2-(trimethylazaniumyl)acetate

C5H11NO2 (117.0789746)


Betaine or trimethylglycine is a methylated derivative of glycine. It functions as a methyl donor in that it carries and donates methyl functional groups to facilitate necessary chemical processes. The donation of methyl groups is important to proper liver function, cellular replication, and detoxification reactions. Betaine also plays a role in the manufacture of carnitine and serves to protect the kidneys from damage. Betaine has also been of interest for its role in osmoregulation. As a drug, betaine hydrochloride has been used as a source of hydrochloric acid in the treatment of hypochlorhydria. Betaine has also been used in the treatment of liver disorders, for hyperkalemia, for homocystinuria, and for gastrointestinal disturbances. (From Martindale, The Extra Pharmacopoeia, 30th Ed, p1341). Betaine is found in many foods, some of which are potato puffs, poppy, hazelnut, and garden cress. Betaine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=107-43-7 (retrieved 2024-06-28) (CAS RN: 107-43-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]-4-chromenone

C27H30O16 (610.153378)


C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2352 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.724 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.728 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1921; CONFIDENCE confident structure Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

3,4-Dimethoxycinnamic acid

3,4-Dimethoxycinnamic acid

C11H12O4 (208.0735552)


Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. (E)-3,4-Dimethoxycinnamic acid is the less active isomer of 3,4-Dimethoxycinnamic acid. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. (E)-3,4-Dimethoxycinnamic acid is the less active isomer of 3,4-Dimethoxycinnamic acid. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1].

   

Ferulic acid

4-hydroxy-3-methoxycinnamic acid

C10H10O4 (194.057906)


(E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

2-phenylethyl beta-D-glucopyranoside

2-(hydroxymethyl)-6-(2-phenylethoxy)oxane-3,4,5-triol

C14H20O6 (284.125982)


   

2-Phenylethyl beta-D-glucopyranoside

2-(hydroxymethyl)-6-(2-phenylethoxy)oxane-3,4,5-triol

C14H20O6 (284.125982)


Isolated from Riesling grapes. Constituent of Rosa damascena bulgaria (damask rose variety) and Vitis vinifera (wine grape). 2-Phenylethyl beta-D-galactopyranoside is found in many foods, some of which are herbs and spices, green vegetables, fruits, and alcoholic beverages. 2-Phenylethyl alpha-D-glucopyranoside is found in alcoholic beverages. 2-Phenylethyl alpha-D-glucopyranoside is isolated from Riesling grapes. 2-Phenylethyl beta-D-glucopyranoside is a constituent of Rosa damascena bulgaria (damask rose) and Vitis vinifera (wine grape).

   

3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C10H10O4 (194.057906)


   

(2s,4e)-4-[(2e)-2-[(4-carboxybutyl)imino]ethylidene]-2,3-dihydro-1h-pyridine-2,6-dicarboxylic acid

(2s,4e)-4-[(2e)-2-[(4-carboxybutyl)imino]ethylidene]-2,3-dihydro-1h-pyridine-2,6-dicarboxylic acid

C14H18N2O6 (310.1164808)


   

(3s)-5-{[(2r,3s,4s,5r,6r)-6-(benzyloxy)-3,4,5-trihydroxyoxan-2-yl]methoxy}-3-hydroxy-3-methyl-5-oxopentanoic acid

(3s)-5-{[(2r,3s,4s,5r,6r)-6-(benzyloxy)-3,4,5-trihydroxyoxan-2-yl]methoxy}-3-hydroxy-3-methyl-5-oxopentanoic acid

C19H26O10 (414.1525896)


   

(2s,4e)-4-{2-[(2s)-2-carboxypyrrolidin-1-yl]ethylidene}-2,3-dihydro-1h-pyridine-2,6-dicarboxylic acid

(2s,4e)-4-{2-[(2s)-2-carboxypyrrolidin-1-yl]ethylidene}-2,3-dihydro-1h-pyridine-2,6-dicarboxylic acid

C14H18N2O6 (310.1164808)


   

(2s)-4-{2-[(2s)-2-carboxy-6-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydroindol-1-yl]ethenyl}-2,3-dihydropyridine-2,6-dicarboxylic acid

(2s)-4-{2-[(2s)-2-carboxy-6-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydroindol-1-yl]ethenyl}-2,3-dihydropyridine-2,6-dicarboxylic acid

C24H26N2O13 (550.1434826)


   

(2s)-2-carboxy-1-{2-[(2r)-2-carboxy-6-carboxylato-2,3-dihydro-1h-pyridin-4-ylidene]ethylidene}-6-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1h-1λ⁵-indol-1-ylium

(2s)-2-carboxy-1-{2-[(2r)-2-carboxy-6-carboxylato-2,3-dihydro-1h-pyridin-4-ylidene]ethylidene}-6-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1h-1λ⁵-indol-1-ylium

C24H26N2O13 (550.1434826)


   

(2s)-4-[(1e)-2-[(2s)-2-carboxy-5-{[(2s,3r,4r,5s,6r)-5-[(2-carboxyacetyl)oxy]-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-hydroxy-2,3-dihydroindol-1-yl]ethenyl]-2,3-dihydropyridine-2,6-dicarboxylic acid

(2s)-4-[(1e)-2-[(2s)-2-carboxy-5-{[(2s,3r,4r,5s,6r)-5-[(2-carboxyacetyl)oxy]-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-hydroxy-2,3-dihydroindol-1-yl]ethenyl]-2,3-dihydropyridine-2,6-dicarboxylic acid

C27H28N2O16 (636.1438768)


   
   

(2s)-4-[(1e)-2-[(2s)-2-carboxy-5-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4s)-3,4-dihydroxy-4-({[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-hydroxy-2,3-dihydroindol-1-yl]ethenyl]-2,3-dihydropyridine-2,6-dicarboxylic acid

(2s)-4-[(1e)-2-[(2s)-2-carboxy-5-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4s)-3,4-dihydroxy-4-({[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-hydroxy-2,3-dihydroindol-1-yl]ethenyl]-2,3-dihydropyridine-2,6-dicarboxylic acid

C40H44N2O21 (888.2436454000001)


   

(2r)-2-hydroxy-4-methoxy-2-methyl-4-oxobutanoic acid

(2r)-2-hydroxy-4-methoxy-2-methyl-4-oxobutanoic acid

C6H10O5 (162.052821)


   

(2s)-2-carboxy-5-{[(2s,3r,4s,5s,6r)-6-{[(2-carboxyacetyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl]oxy}-1-{2-[(2s)-2,6-dicarboxy-2,3-dihydro-1h-pyridin-4-ylidene]ethylidene}-6-hydroxy-2,3-dihydro-1h-1λ⁵-indol-1-ylium

(2s)-2-carboxy-5-{[(2s,3r,4s,5s,6r)-6-{[(2-carboxyacetyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl]oxy}-1-{2-[(2s)-2,6-dicarboxy-2,3-dihydro-1h-pyridin-4-ylidene]ethylidene}-6-hydroxy-2,3-dihydro-1h-1λ⁵-indol-1-ylium

[C27H29N2O16]+ (637.1517014)


   

(2s)-4-[(1e)-2-[(2r)-2-carboxy-5-{[(2s,3r,4s,5s,6r)-6-{[(2-carboxyacetyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl]oxy}-6-hydroxy-2,3-dihydroindol-1-yl]ethenyl]-2,3-dihydropyridine-2,6-dicarboxylic acid

(2s)-4-[(1e)-2-[(2r)-2-carboxy-5-{[(2s,3r,4s,5s,6r)-6-{[(2-carboxyacetyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl]oxy}-6-hydroxy-2,3-dihydroindol-1-yl]ethenyl]-2,3-dihydropyridine-2,6-dicarboxylic acid

C27H28N2O16 (636.1438768)


   

(2s)-4-[(1e)-2-[(2s)-2-carboxy-5-{[(2s,3r,4s,5s,6r)-6-{[(2-carboxyacetyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl]oxy}-6-hydroxy-2,3-dihydroindol-1-yl]ethenyl]-2,3-dihydropyridine-2,6-dicarboxylic acid

(2s)-4-[(1e)-2-[(2s)-2-carboxy-5-{[(2s,3r,4s,5s,6r)-6-{[(2-carboxyacetyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl]oxy}-6-hydroxy-2,3-dihydroindol-1-yl]ethenyl]-2,3-dihydropyridine-2,6-dicarboxylic acid

C27H28N2O16 (636.1438768)


   

(2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-(2-phenylethoxy)oxane-3,4,5-triol

(2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-(2-phenylethoxy)oxane-3,4,5-triol

C14H20O6 (284.125982)


   

pyrotartaric acid

pyrotartaric acid

C5H8O5 (148.0371718)


   

(2r)-4-{2-[(2s)-2-carboxy-6-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydroindol-1-yl]ethenyl}-2,3-dihydropyridine-2,6-dicarboxylic acid

(2r)-4-{2-[(2s)-2-carboxy-6-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydroindol-1-yl]ethenyl}-2,3-dihydropyridine-2,6-dicarboxylic acid

C24H26N2O13 (550.1434826)


   

1-[(2r,3s,4s,5r,6r)-6-(benzyloxy)-3,4,5-trihydroxyoxan-2-yl]methyl 5-methyl (3s)-3-hydroxy-3-methylpentanedioate

1-[(2r,3s,4s,5r,6r)-6-(benzyloxy)-3,4,5-trihydroxyoxan-2-yl]methyl 5-methyl (3s)-3-hydroxy-3-methylpentanedioate

C20H28O10 (428.16823880000004)


   

(3s)-3-hydroxy-3-methyl-5-oxo-5-{[(2r,3s,4s,5r,6r)-3,4,5-trihydroxy-6-(2-phenylethoxy)oxan-2-yl]methoxy}pentanoic acid

(3s)-3-hydroxy-3-methyl-5-oxo-5-{[(2r,3s,4s,5r,6r)-3,4,5-trihydroxy-6-(2-phenylethoxy)oxan-2-yl]methoxy}pentanoic acid

C20H28O10 (428.16823880000004)


   

(2s)-4-[(1e)-2-[(2s)-2-carboxy-5-{[(2s,3r,4s,5s,6r)-6-{[(4-carboxy-3-hydroxy-3-methylbutanoyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl]oxy}-6-hydroxy-2,3-dihydroindol-1-yl]ethenyl]-2,3-dihydropyridine-2,6-dicarboxylic acid

(2s)-4-[(1e)-2-[(2s)-2-carboxy-5-{[(2s,3r,4s,5s,6r)-6-{[(4-carboxy-3-hydroxy-3-methylbutanoyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl]oxy}-6-hydroxy-2,3-dihydroindol-1-yl]ethenyl]-2,3-dihydropyridine-2,6-dicarboxylic acid

C30H34N2O17 (694.1857394000001)


   

(2s)-4-[(1e)-2-[(2s)-2-carboxy-5-{[(2s,3r,4s,5r,6r)-6-{[(2-carboxyacetyl)oxy]methyl}-3-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-6-hydroxy-2,3-dihydroindol-1-yl]ethenyl]-2,3-dihydropyridine-2,6-dicarboxylic acid

(2s)-4-[(1e)-2-[(2s)-2-carboxy-5-{[(2s,3r,4s,5r,6r)-6-{[(2-carboxyacetyl)oxy]methyl}-3-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-6-hydroxy-2,3-dihydroindol-1-yl]ethenyl]-2,3-dihydropyridine-2,6-dicarboxylic acid

C32H36N2O20 (768.1861336)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

4-[2-(2-carboxypyrrolidin-1-yl)ethylidene]-2,3-dihydro-1h-pyridine-2,6-dicarboxylic acid

4-[2-(2-carboxypyrrolidin-1-yl)ethylidene]-2,3-dihydro-1h-pyridine-2,6-dicarboxylic acid

C14H18N2O6 (310.1164808)


   

(2s)-2-carboxy-1-{2-[(2s)-2-carboxy-6-carboxylato-2,3-dihydro-1h-pyridin-4-ylidene]ethylidene}-6-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1h-1λ⁵-indol-1-ylium

(2s)-2-carboxy-1-{2-[(2s)-2-carboxy-6-carboxylato-2,3-dihydro-1h-pyridin-4-ylidene]ethylidene}-6-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1h-1λ⁵-indol-1-ylium

C24H26N2O13 (550.1434826)


   

(2s)-4-[(1e)-2-[(2s)-2-carboxy-5-{[(2s,3r,4s,5s,6r)-6-({[(3s)-4-carboxy-3-hydroxy-3-methylbutanoyl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-6-hydroxy-2,3-dihydroindol-1-yl]ethenyl]-2,3-dihydropyridine-2,6-dicarboxylic acid

(2s)-4-[(1e)-2-[(2s)-2-carboxy-5-{[(2s,3r,4s,5s,6r)-6-({[(3s)-4-carboxy-3-hydroxy-3-methylbutanoyl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-6-hydroxy-2,3-dihydroindol-1-yl]ethenyl]-2,3-dihydropyridine-2,6-dicarboxylic acid

C30H34N2O17 (694.1857394000001)


   

(3r)-3-hydroxy-4-methoxy-3-methyl-4-oxobutanoic acid

(3r)-3-hydroxy-4-methoxy-3-methyl-4-oxobutanoic acid

C6H10O5 (162.052821)


   

4-{2-[(4-carboxybutyl)imino]ethylidene}-2,3-dihydro-1h-pyridine-2,6-dicarboxylic acid

4-{2-[(4-carboxybutyl)imino]ethylidene}-2,3-dihydro-1h-pyridine-2,6-dicarboxylic acid

C14H18N2O6 (310.1164808)


   

(2s)-4-[(1e)-2-[(2s)-2-carboxy-5-{[(2s,3r,4s,5s,6r)-6-{[(2-carboxyacetyl)oxy]methyl}-3-{[(2s,3r,4s)-3,4-dihydroxy-4-({[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-6-hydroxy-2,3-dihydroindol-1-yl]ethenyl]-2,3-dihydropyridine-2,6-dicarboxylic acid

(2s)-4-[(1e)-2-[(2s)-2-carboxy-5-{[(2s,3r,4s,5s,6r)-6-{[(2-carboxyacetyl)oxy]methyl}-3-{[(2s,3r,4s)-3,4-dihydroxy-4-({[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-6-hydroxy-2,3-dihydroindol-1-yl]ethenyl]-2,3-dihydropyridine-2,6-dicarboxylic acid

C42H44N2O23 (944.2334754000001)