NCBI Taxonomy: 1436092

Centaurea hierapolitana (ncbi_taxid: 1436092)

found 58 associated metabolites at species taxonomy rank level.

Ancestor: Centaurea

Child Taxonomies: none taxonomy data.

Kaempferol_3-O-rutinoside

5,7-Dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C27H30O15 (594.158463)


Kaempferol-3-rutinoside is a kaempferol O-glucoside that is kaempferol attached to a rutinosyl [6-deoxy-alpha-L-mannosyl-(1->6)-beta-D-glucosyl] residue at position 3 via a glycosidic linkage. It has been isolated from the leaves of Solanum campaniforme. It has a role as a metabolite, a radical scavenger and a plant metabolite. It is a rutinoside, a trihydroxyflavone, a disaccharide derivative and a kaempferol O-glucoside. Nicotiflorin is a natural product found in Visnea mocanera, Eupatorium cannabinum, and other organisms with data available. See also: Cocoa (part of). A kaempferol O-glucoside that is kaempferol attached to a rutinosyl [6-deoxy-alpha-L-mannosyl-(1->6)-beta-D-glucosyl] residue at position 3 via a glycosidic linkage. It has been isolated from the leaves of Solanum campaniforme. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

6-beta-D-Glucopyranosyl-8-beta-D-ribopyranosylapigenin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)-4H-chromen-4-one

C26H28O14 (564.1478988)


5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]-8-(3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)-4H-chromen-4-one is a member of flavonoids and a C-glycosyl compound. 5,7-Dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one is a natural product found in Cymbidium kanran, Acanthus, and other organisms with data available. 6-beta-D-Glucopyranosyl-8-beta-D-ribopyranosylapigenin is found in herbs and spices. 6-beta-D-Glucopyranosyl-8-beta-D-ribopyranosylapigenin is a constituent of Passiflora incarnata (maypops). Constituent of Passiflora incarnata (maypops). Apigenin 6-C-glucoside 8-C-riboside is found in herbs and spices. Neoschaftoside is a flavone C-glycoside that is apigenin attached to a beta-D-glucopyranosyl and a beta-L-arabinopyranosyl residues at positions 6 and 8 respectively via C-glycosidic linkage. It has a role as a plant metabolite. It is a flavone C-glycoside and a dihydroxyflavone. It is functionally related to an apigenin. Neoschaftoside is a natural product found in Radula complanata, Artemisia judaica, and other organisms with data available. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1].

   

dinatin

Scutellarein 6-methyl ether

C16H12O6 (300.06338519999997)


Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

Schaftoside

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)-4H-chromen-4-one

C26H28O14 (564.1478988)


Apigenin 6-c-glucoside 8-c-riboside is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Apigenin 6-c-glucoside 8-c-riboside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Apigenin 6-c-glucoside 8-c-riboside can be found in herbs and spices, which makes apigenin 6-c-glucoside 8-c-riboside a potential biomarker for the consumption of this food product. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1].

   

Biorobin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C27H30O15 (594.158463)


Isolated from Medicago subspecies, Trigonella subspecies and other plant subspecies Kaempferol 3-robinobioside is found in herbs and spices and pulses. Biorobin is found in herbs and spices. Biorobin is isolated from Medicago species, Trigonella species and other plant species.

   

Vicinin 2

5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})-4H-chromen-4-one

C27H30O17 (626.148293)


Vicinin 2 is found in citrus. Vicinin 2 is a constituent of lemon (Citrus limon) peel and sugar cane syrup. Constituent of lemon (Citrus limon) peel and sugar cane syrup. Vicinin 2 is found in citrus.

   

Vicenin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-bis({[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})-4H-chromen-4-one

C27H30O17 (626.148293)


Vicenin is a member of the class of compounds known as flavonoid-8-o-glycosides. Flavonoid-8-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C8-position. Vicenin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Vicenin can be found in dill and prairie turnip, which makes vicenin a potential biomarker for the consumption of these food products.

   

Kaempferol 3-rhamno-glucoside

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-4H-chromen-4-one

C27H30O15 (594.158463)


Kaempferol 3-rhamno-glucoside, also known as nicotiflorin or kaempferol 3-rutinoside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-rhamno-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-rhamno-glucoside can be found in ginkgo nuts and tea, which makes kaempferol 3-rhamno-glucoside a potential biomarker for the consumption of these food products. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

Hispidulin

4H-1-Benzopyran-4-one, 5, 7-dihydroxy-2-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.06338519999997)


Hispidulin is a monomethoxyflavone that is scutellarein methylated at position 6. It has a role as an apoptosis inducer, an anti-inflammatory agent, an antioxidant, an anticonvulsant, an antineoplastic agent and a plant metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a scutellarein. Hispidulin (4,5,7-trihydroxy-6-methoxyflavone) is a potent benzodiazepine (BZD) receptor ligand with positive allosteric properties. Hispidulin is a natural product found in Eupatorium cannabinum, Eupatorium perfoliatum, and other organisms with data available. See also: Arnica montana Flower (part of). A monomethoxyflavone that is scutellarein methylated at position 6. 6-methylscutellarein, also known as 4,5,7-trihydroxy-6-methoxyflavone or dinatin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 6-methylscutellarein is considered to be a flavonoid lipid molecule. 6-methylscutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 6-methylscutellarein can be found in a number of food items such as italian oregano, common sage, sunflower, and common thyme, which makes 6-methylscutellarein a potential biomarker for the consumption of these food products. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

Jaceosidin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methoxy-

C17H14O7 (330.0739494)


Jaceosidin, also known as 4,5,7-trihydroxy-3,6-dimethoxyflavone, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, jaceosidin is considered to be a flavonoid lipid molecule. Jaceosidin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Jaceosidin can be found in lemon verbena, which makes jaceosidin a potential biomarker for the consumption of this food product. Jaceosidin is a flavonoid isolated from Artemisia vestita, induces apoptosis in cancer cells, activates Bax and down-regulates Mcl-1 and c-FLIP expression[1]. Jaceosidin exhibits anti-cancer[2], anti-inflammatory activities, decreases leves of inflammatory markers, and suppresses COX-2 expression and NF-κB activation[3]. Jaceosidin is a flavonoid isolated from Artemisia vestita, induces apoptosis in cancer cells, activates Bax and down-regulates Mcl-1 and c-FLIP expression[1]. Jaceosidin exhibits anti-cancer[2], anti-inflammatory activities, decreases leves of inflammatory markers, and suppresses COX-2 expression and NF-κB activation[3].

   

dinatin

4H-1-Benzopyran-4-one, 5, 7-dihydroxy-2-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.06338519999997)


Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

Kaempferol-3-rutinoside

Kaempferol-7-O-neohesperidoside

C27H30O15 (594.158463)


Kaempferol 3-rhamno-glucoside, also known as nicotiflorin or kaempferol 3-rutinoside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-rhamno-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-rhamno-glucoside can be found in ginkgo nuts and tea, which makes kaempferol 3-rhamno-glucoside a potential biomarker for the consumption of these food products. Acquisition and generation of the data is financially supported in part by CREST/JST. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

NCGC00180115-02!5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

C26H28O14 (564.1478988)


   

5,7-Dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

5,7-Dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

C26H28O14 (564.1478988)


   

Vicinin 2

5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})-4H-chromen-4-one

C27H30O17 (626.148293)


   

5-O-Methylhierochin D

(+)-dehydrodiconiferyl alcohol

C20H22O6 (358.1416312)


A dehydrodiconiferyl alcohol that has (2S,3R)-configuration. A natural product isolated from several plant species including Allium sativum and Codonopsis pilosula.

   

(3ar,4s,6r,7s,7ar)-7-[3-(acetyloxy)prop-1-en-2-yl]-6-ethenyl-6-(hydroxymethyl)-3-methylidene-2-oxo-tetrahydro-3ah-1-benzofuran-4-yl 2-(hydroxymethyl)prop-2-enoate

(3ar,4s,6r,7s,7ar)-7-[3-(acetyloxy)prop-1-en-2-yl]-6-ethenyl-6-(hydroxymethyl)-3-methylidene-2-oxo-tetrahydro-3ah-1-benzofuran-4-yl 2-(hydroxymethyl)prop-2-enoate

C21H26O8 (406.1627596)


   

4-[(2s,3r)-5-[(1e)-3-hydroxyprop-1-en-1-yl]-3-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenol

4-[(2s,3r)-5-[(1e)-3-hydroxyprop-1-en-1-yl]-3-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenol

C19H20O5 (328.13106700000003)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2s,3r,4s,5s,6s)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2s,3r,4s,5s,6s)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

C27H30O15 (594.158463)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-[(2r,3s,4r,5r)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-[(2r,3s,4r,5r)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

C26H28O14 (564.1478988)


   

4-[(2s,3r)-3-(hydroxymethyl)-5-[(1e)-3-hydroxyprop-1-en-1-yl]-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenol

4-[(2s,3r)-3-(hydroxymethyl)-5-[(1e)-3-hydroxyprop-1-en-1-yl]-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenol

C20H22O6 (358.1416312)


   

2-[(2r,4as,7s,8r,8ar)-8-hydroxy-4a,8-dimethyl-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydronaphthalen-2-yl]prop-2-enoic acid

2-[(2r,4as,7s,8r,8ar)-8-hydroxy-4a,8-dimethyl-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydronaphthalen-2-yl]prop-2-enoic acid

C21H34O9 (430.2202714)


   

(3ar,4s,6r,7s,7ar)-6-ethenyl-6-(hydroxymethyl)-7-(3-hydroxyprop-1-en-2-yl)-3-methylidene-2-oxo-tetrahydro-3ah-1-benzofuran-4-yl 2-methylprop-2-enoate

(3ar,4s,6r,7s,7ar)-6-ethenyl-6-(hydroxymethyl)-7-(3-hydroxyprop-1-en-2-yl)-3-methylidene-2-oxo-tetrahydro-3ah-1-benzofuran-4-yl 2-methylprop-2-enoate

C19H24O6 (348.1572804)


   

(3ar,4s,6r,7s,7ar)-7-[3-(acetyloxy)prop-1-en-2-yl]-6-ethenyl-6-(hydroxymethyl)-3-methylidene-2-oxo-tetrahydro-3ah-1-benzofuran-4-yl 2-hydroxyprop-2-enoate

(3ar,4s,6r,7s,7ar)-7-[3-(acetyloxy)prop-1-en-2-yl]-6-ethenyl-6-(hydroxymethyl)-3-methylidene-2-oxo-tetrahydro-3ah-1-benzofuran-4-yl 2-hydroxyprop-2-enoate

C20H24O8 (392.1471104)


   

4-[(2s,3r)-5-(3-hydroxyprop-1-en-1-yl)-3-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenol

4-[(2s,3r)-5-(3-hydroxyprop-1-en-1-yl)-3-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenol

C19H20O5 (328.13106700000003)


   

2-[(2r,4as,7s,8ar)-4a-methyl-8-methylidene-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydronaphthalen-2-yl]prop-2-enoic acid

2-[(2r,4as,7s,8ar)-4a-methyl-8-methylidene-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydronaphthalen-2-yl]prop-2-enoic acid

C21H32O8 (412.20970719999997)