NCBI Taxonomy: 1383560

Tephrosia hamiltonii (ncbi_taxid: 1383560)

found 15 associated metabolites at species taxonomy rank level.

Ancestor: Tephrosia

Child Taxonomies: none taxonomy data.

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.1534)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Clionasterol

24beta-Ethyl-5-cholesten-3beta-ol

C29H50O (414.3861)


Clionasterol is a triterpenoid isolated from the Indian marine red alga Gracilaria edulis, the sponge Veronica aerophoba and the Kenyan Marine Green. Macroalga Halimeda macroloba. It is a potent inhibitor of complement component C1. (PMID 12624828). D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites

   

4-Methoxy-1-benzofuran-5-carboxylic acid

4-Methoxy-1-benzofuran-5-carboxylic acid

C10H8O4 (192.0423)


   

Lanceolatin C

1-(4-methoxy-1-benzofuran-5-yl)-3-phenylpropane-1,3-dione

C18H14O4 (294.0892)


Pongamol (Lanceolatin C) is potent α-glucosidase inhibitor (IC50=103.5 μM) and has free-radical (DPPH) scavenging,antihyperglycemic, and antihyperglycemic activities[1].

   

Quercetin-3-o-rutinose

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C27H30O16 (610.1534)


   

Anhydropisatin

16-methoxy-5,7,11,19-tetraoxapentacyclo[10.8.0.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]icosa-1(12),2,4(8),9,13(18),14,16-heptaene

C17H12O5 (296.0685)


Anhydropisatin is a member of the class of compounds known as pterocarpans. Pterocarpans are benzo-pyrano-furano-benzene compounds, containing the 6H-[1]benzofuro[3,2-c]chromene skeleton. They are derivatives of isoflavonoids. Thus, anhydropisatin is considered to be a flavonoid lipid molecule. Anhydropisatin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Anhydropisatin can be found in common pea, which makes anhydropisatin a potential biomarker for the consumption of this food product.

   

Flemichapparin C

3-Methoxy-8,9-methylenedioxycoumestan

C17H10O6 (310.0477)


   

Anhydropisatin

3-Methoxy-6H- [ 1,3 ] dioxolo [ 5,6 ] benzofuro [ 3,2-c ] [ 1 ] benzopyran

C17H12O5 (296.0685)


   

pongamol

(2Z)-3-hydroxy-1-(4-methoxy-1-benzofuran-5-yl)-3-phenylprop-2-en-1-one

C18H14O4 (294.0892)


Pongamol (Lanceolatin C) is potent α-glucosidase inhibitor (IC50=103.5 μM) and has free-radical (DPPH) scavenging,antihyperglycemic, and antihyperglycemic activities[1].

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]-4-chromenone

C27H30O16 (610.1534)


C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2352 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.724 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.728 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1921; CONFIDENCE confident structure Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

clionasterol

(3beta,24S)-stigmast-5-en-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is poriferast-5-ene carrying a beta-hydroxy substituent at position 3. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites

   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

14,14-dimethyl-6-oxo-4-phenyl-3,11,13-trioxatetracyclo[8.6.0.0²,⁷.0¹²,¹⁶]hexadeca-1(10),2(7),8-trien-15-yl acetate

14,14-dimethyl-6-oxo-4-phenyl-3,11,13-trioxatetracyclo[8.6.0.0²,⁷.0¹²,¹⁶]hexadeca-1(10),2(7),8-trien-15-yl acetate

C23H22O6 (394.1416)


   

(4s,12s,15r,16r)-14,14-dimethyl-6-oxo-4-phenyl-3,11,13-trioxatetracyclo[8.6.0.0²,⁷.0¹²,¹⁶]hexadeca-1(10),2(7),8-trien-15-yl acetate

(4s,12s,15r,16r)-14,14-dimethyl-6-oxo-4-phenyl-3,11,13-trioxatetracyclo[8.6.0.0²,⁷.0¹²,¹⁶]hexadeca-1(10),2(7),8-trien-15-yl acetate

C23H22O6 (394.1416)


   

5,14-dihydroxy-4-methoxy-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1(10),2(7),3,5,11(16),12,14-heptaen-9-one

5,14-dihydroxy-4-methoxy-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1(10),2(7),3,5,11(16),12,14-heptaen-9-one

C16H10O6 (298.0477)