NCBI Taxonomy: 13005
Chloranthus (ncbi_taxid: 13005)
found 155 associated metabolites at genus taxonomy rank level.
Ancestor: Chloranthaceae
Child Taxonomies: Chloranthus spicatus, Chloranthus henryi, Chloranthus erectus, Chloranthus fortunei, Chloranthus nervosus, Chloranthus serratus, Chloranthus oldhamii, Chloranthus coccineus, Chloranthus holostegius, Chloranthus officinalis, unclassified Chloranthus, Chloranthus multistachys, Chloranthus inconspicuus, Chloranthus quadrifolius, Chloranthus angustifolius, Chloranthus sessilifolius
Scopoletin
Scopoletin is a hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. It has a role as a plant growth regulator and a plant metabolite. It is functionally related to an umbelliferone. Scopoletin is a natural product found in Ficus auriculata, Haplophyllum cappadocicum, and other organisms with data available. Scopoletin is a coumarin compound found in several plants including those in the genus Scopolia and the genus Brunfelsia, as well as chicory (Cichorium), redstem wormwood (Artemisia scoparia), stinging nettle (Urtica dioica), passion flower (Passiflora), noni (Morinda citrifolia fruit) and European black nightshade (Solanum nigrum) that is comprised of umbelliferone with a methoxy group substituent at position 6. Scopoletin is used to standardize and establish pharmacokinetic properties for products derived from the plants that produce it, such as noni extract. Although the mechanism(s) of action have not yet been established, this agent has potential antineoplastic, antidopaminergic, antioxidant, anti-inflammatory and anticholinesterase effects. Plant growth factor derived from the root of Scopolia carniolica or Scopolia japonica. See also: Arnica montana Flower (part of); Lycium barbarum fruit (part of); Viburnum opulus root (part of). Isolated from Angelica acutiloba (Dong Dang Gui). Scopoletin is found in many foods, some of which are lambsquarters, lemon, sunflower, and sherry. Scopoletin is found in anise. Scopoletin is isolated from Angelica acutiloba (Dong Dang Gui A hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA72_Scopoletin_pos_20eV.txt [Raw Data] CBA72_Scopoletin_pos_40eV.txt [Raw Data] CBA72_Scopoletin_neg_30eV.txt [Raw Data] CBA72_Scopoletin_neg_50eV.txt [Raw Data] CBA72_Scopoletin_pos_50eV.txt [Raw Data] CBA72_Scopoletin_pos_10eV.txt [Raw Data] CBA72_Scopoletin_neg_40eV.txt [Raw Data] CBA72_Scopoletin_neg_10eV.txt [Raw Data] CBA72_Scopoletin_pos_30eV.txt [Raw Data] CBA72_Scopoletin_neg_20eV.txt Scopoletin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=92-61-5 (retrieved 2024-07-12) (CAS RN: 92-61-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).
Isoscopoletin
Isoscopoletin is a hydroxycoumarin that is esculetin in which the hydroxy group at position 7 is replaced by a methoxy group. It is the major primary metabolite of scoparone. It has a role as a plant metabolite. It is a hydroxycoumarin and an aromatic ether. It is functionally related to an esculetin. Isoscopoletin is a natural product found in Clausena dunniana, Olea capensis, and other organisms with data available. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) is an active constituent in Artemisia argyi leaves. Isoscopoletin shows substantial inhibition against cell proliferation, with IC50s of 4.0 μM and 1.6 μM for human CCRF-CEM leukaemia cells and multidrug resistant subline CEM/ADR5000, respectively[1]. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) possesses inhibitory activity against HBV replication[2]. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) is an active constituent in Artemisia argyi leaves. Isoscopoletin shows substantial inhibition against cell proliferation, with IC50s of 4.0 μM and 1.6 μM for human CCRF-CEM leukaemia cells and multidrug resistant subline CEM/ADR5000, respectively[1]. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) possesses inhibitory activity against HBV replication[2].
codonolactone
Atractylenolide III is a naphthofuran. It has a role as a metabolite. Atractylenolide III is a natural product found in Codonopsis canescens, Codonopsis subglobosa, and other organisms with data available. A natural product found in Atractylodes lancea. Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells. Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells.
Asterolide
Atractylenolide II is a sesquiterpene lactone. Atractylenolide II is a natural product found in Chloranthus henryi, Atractylodes macrocephala, and other organisms with data available. Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2]. Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2].
Furanodienone
Furanodienone is a germacrane sesquiterpenoid. (5E,9E)-3,6,10-trimethyl-8,11-dihydro-7H-cyclodeca[b]furan-4-one is a natural product found in Curcuma amada, Curcuma aeruginosa, and other organisms with data available. Isofuranodienone is a constituent of Curcuma zedoaria (zedoary). Constituent of Curcuma zedoaria (zedoary) Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1]. Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1].
Furanodiene
Furanodiene is a germacrane sesquiterpenoid. Furanodiene is a natural product found in Curcuma amada, Lactarius chrysorrheus, and other organisms with data available. Furanodiene is a constituent of Curcuma zedoaria (zedoary) Constituent of Curcuma zedoaria (zedoary)
Curzerenone
Constituent of Curcuma zedoaria (zedoary). Curzerenone is found in turmeric. 5-Epicurzerenone is from Curcuma zedoaria (zedoary Curzerenone is a monoterpenoid. 4(5H)-Benzofuranone, 6-ethenyl-6,7-dihydro-3,6-dimethyl-5-(1-methylethenyl)-, trans- is a natural product found in Prumnopitys andina, Curcuma aeruginosa, and other organisms with data available. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1]. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1].
Curcolonol
Curcolonol is a constituent of Curcuma zedoaria (zedoary). Constituent of Curcuma zedoaria (zedoary).
Acoragermacrone
Acoragermacrone is found in herbs and spices. Acoragermacrone is a constituent of Acorus calamus (sweet flag). Constituent of Acorus calamus (sweet flag). Acoragermacrone is found in herbs and spices and root vegetables.
Acolamone
Constituent of Acorus calamus (sweet flag). Acolamone is found in herbs and spices and root vegetables. Acolamone is found in herbs and spices. Acolamone is a constituent of Acorus calamus (sweet flag)
Atractylenolide II
Atractylenolide III
Curzerenone C
Curzerenone c is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring. Curzerenone c is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Curzerenone c can be found in turmeric, which makes curzerenone c a potential biomarker for the consumption of this food product. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1]. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1].
Chloranthalactone E
Chloranthalactone E is a natural product found in Sarcandra glabra with data available.
Chloranthalactone C
shizukaol B
Shizukaol B is a triterpenoid. It has a role as a metabolite. shizukaol B is a natural product found in Chloranthus spicatus, Chloranthus fortunei, and other organisms with data available. A natural product found in Chloranthus japonicus.
Oplodiol
Oplodiol is a carbobicyclic compound that is 1,2,3,4,4a,5,8,8a-octahydronaphthalene which is substituted by hydroxy groups at positions 1 and 4, an isoopropyl group at position 7, and by methyl groups at positions 1 and 4a (the 1S,4R,4aR,8aR isomer). A sesquiterpenoid plant metabolite. It has a role as a plant metabolite. It is a tertiary alcohol, a secondary alcohol, a carbobicyclic compound, a sesquiterpenoid and a member of octahydronaphthalenes. Oplodiol is a natural product found in Hedychium spicatum, Schisandra plena, and other organisms with data available. A carbobicyclic compound that is 1,2,3,4,4a,5,8,8a-octahydronaphthalene which is substituted by hydroxy groups at positions 1 and 4, an isoopropyl group at position 7, and by methyl groups at positions 1 and 4a (the 1S,4R,4aR,8aR isomer). A sesquiterpenoid plant metabolite.
Furanodienon
Furanodienone is a germacrane sesquiterpenoid. (5E,9E)-3,6,10-trimethyl-8,11-dihydro-7H-cyclodeca[b]furan-4-one is a natural product found in Curcuma amada, Curcuma aeruginosa, and other organisms with data available. Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1]. Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1].
3,4,5-Trimethoxybenzaldehyde
3,4,5-Trimethoxybenzaldehyde is a natural product found in Zanthoxylum ailanthoides, Cassia grandis, and other organisms with data available. 3,4,5-Trimethoxybenzaldehyde is an intermediate for the synthesis of various pharmaceuticals, especially for trimethoprim used to research bacterial infections, including urinary tract pathogens infection. 3,4,5-Trimethoxybenzaldehyde is an intermediate for the synthesis of various pharmaceuticals, especially for trimethoprim used to research bacterial infections, including urinary tract pathogens infection.
Shizukaol G
Shizukaol G is a natural product found in Chloranthus spicatus, Chloranthus serratus, and Sarcandra glabra with data available.
Curcolonol
Curcolonol is a sesquiterpenoid. Curcolonol is a natural product found in Chloranthus multistachys and Curcuma zedoaria with data available.
Scopoletin
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.637 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.629 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.631 IPB_RECORD: 1582; CONFIDENCE confident structure Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).
Atractylenolide III
Annotation level-1 Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells. Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells.
Pisumionoside
Scopoletol
Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).
atractylenolideII
Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2]. Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2].
Atractylenolide-III
Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells. Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells.
Isoscopoletin
Isoscopoletin is a hydroxycoumarin that is esculetin in which the hydroxy group at position 7 is replaced by a methoxy group. It is the major primary metabolite of scoparone. It has a role as a plant metabolite. It is a hydroxycoumarin and an aromatic ether. It is functionally related to an esculetin. Isoscopoletin is a natural product found in Clausena dunniana, Olea capensis, and other organisms with data available. A hydroxycoumarin that is esculetin in which the hydroxy group at position 7 is replaced by a methoxy group. It is the major primary metabolite of scoparone. Isoscopoletin, also known as 6-hydroxy-7-methoxycoumarin or 7-methoxyesculetin, is a member of the class of compounds known as hydroxycoumarins. Hydroxycoumarins are coumarins that contain one or more hydroxyl groups attached to the coumarin skeleton. Isoscopoletin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isoscopoletin can be found in coriander and eggplant, which makes isoscopoletin a potential biomarker for the consumption of these food products. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) is an active constituent in Artemisia argyi leaves. Isoscopoletin shows substantial inhibition against cell proliferation, with IC50s of 4.0 μM and 1.6 μM for human CCRF-CEM leukaemia cells and multidrug resistant subline CEM/ADR5000, respectively[1]. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) possesses inhibitory activity against HBV replication[2]. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) is an active constituent in Artemisia argyi leaves. Isoscopoletin shows substantial inhibition against cell proliferation, with IC50s of 4.0 μM and 1.6 μM for human CCRF-CEM leukaemia cells and multidrug resistant subline CEM/ADR5000, respectively[1]. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) possesses inhibitory activity against HBV replication[2].
Furanodiene
Curzerenone
Curzerenone is a monoterpenoid. 4(5H)-Benzofuranone, 6-ethenyl-6,7-dihydro-3,6-dimethyl-5-(1-methylethenyl)-, trans- is a natural product found in Prumnopitys andina, Curcuma aeruginosa, and other organisms with data available. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1]. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1].