NCBI Taxonomy: 1279153

Pitavia punctata (ncbi_taxid: 1279153)

found 26 associated metabolites at species taxonomy rank level.

Ancestor: Pitavia

Child Taxonomies: none taxonomy data.

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.0427)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Nonacosane

Nonacosane; Celidoniol, deoxy- (7CI); n-Nonacosane

C29H60 (408.4695)


Nonacosane, also known as CH3-[CH2]27-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Nonacosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, nonacosane is considered to be a hydrocarbon lipid molecule. Nonacosane is a straight-chain hydrocarbon with a molecular formula of C29H60. Nonacosane has been identified within several essential oils. Nonacosane has been detected, but not quantified, in several different foods, such as peachs, ginkgo nuts, cauliflowers, arabica coffee, and lambsquarters. This could make nonacosane a potential biomarker for the consumption of these foods. Nonacosane occurs naturally and has been reported to be a component of a pheromone of Orgyia leucostigma, and evidence suggests it plays a role in the chemical communication of several insects, including the female Anopheles stephensi (a mosquito). It can also be prepared synthetically. It has 1,590,507,121 constitutional isomers. Nonacosane, also known as ch3-[ch2]27-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, nonacosane is considered to be a hydrocarbon lipid molecule. Nonacosane can be found in a number of food items such as garden tomato (variety), papaya, brussel sprouts, and wild carrot, which makes nonacosane a potential biomarker for the consumption of these food products. Nonacosane occurs naturally and has been reported to be a component of a pheromone of Orgyia leucostigma, and evidence suggests it plays a role in the chemical communication of several insects, including the female Anopheles stephensi (a mosquito) . Nonacosane is a straight-chain alkane comprising of 29 carbon atoms. It has a role as a plant metabolite and a volatile oil component. Nonacosane is a natural product found in Euphorbia larica, Quercus salicina, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). A straight-chain alkane comprising of 29 carbon atoms. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1]. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1].

   

Skimmianine

4,7,8-trimethoxy-furo(2,3-b)quinoline

C14H13NO4 (259.0845)


Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].

   

Dictamnine

4-methoxyfuro(2,3-b)quinoline

C12H9NO2 (199.0633)


Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities. Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities.

   

gamma-Fagarine

4,8-Dimethoxyfuro[2,3-b]quinoline; 8-Methoxydictamnine; Fagarine

C13H11NO3 (229.0739)


Gamma-Fagarine is an organic heterotricyclic compound, an organonitrogen heterocyclic compound and an oxacycle. gamma-Fagarine is a natural product found in Haplophyllum bucharicum, Haplophyllum griffithianum, and other organisms with data available. gamma-Fagarine is found in fruits. gamma-Fagarine is an alkaloid from Aegle marmelos (bael fruit

   

dictamine

4-27-00-02030 (Beilstein Handbook Reference)

C12H9NO2 (199.0633)


Dictamnine is an oxacycle, an organonitrogen heterocyclic compound, an organic heterotricyclic compound and an alkaloid antibiotic. Dictamnine is a natural product found in Haplophyllum bucharicum, Haplophyllum cappadocicum, and other organisms with data available. A furoquinoline alkaloid, dictamnine, is very common within the family Rutaceae. It is the main alkaloid in the roots of Dictamnus albus and responsible for the mutagenicity of the drug derived from crude extracts. Dictamnine was also reported to be a phototoxic and photomutagenic compound. It participates in the severe skin phototoxicity of the plant. Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities. Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities.

   

Skimmianine

InChI=1/C14H13NO4/c1-16-10-5-4-8-11(13(10)18-3)15-14-9(6-7-19-14)12(8)17-2/h4-7H,1-3H

C14H13NO4 (259.0845)


Skimmianine is an organonitrogen heterocyclic compound, an organic heterotricyclic compound, an oxacycle and an alkaloid antibiotic. Skimmianine is a natural product found in Haplophyllum bucharicum, Haplophyllum cappadocicum, and other organisms with data available. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].

   

Braylin

6-methoxy-8,8-dimethyl-2H,8H-pyrano[2,3-h]chromen-2-one

C15H14O4 (258.0892)


Braylin is a member of the class of compounds known as angular pyranocoumarins. Angular pyranocoumarins are organic compounds containing a pyran (or a hydrogenated derivative) angularly fused to a coumarin moiety. Braylin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Braylin can be found in lemon, mandarin orange (clementine, tangerine), and sweet orange, which makes braylin a potential biomarker for the consumption of these food products.

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.0427)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Skimmianine

Skimmianine

C14H13NO4 (259.0845)


Origin: Plant; SubCategory_DNP: Alkaloids derived from anthranilic acid, Quinoline alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.048 Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].

   
   

γ-Fagarine

gamma-Fagarine

C13H11NO3 (229.0739)


   

Quertin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-

C15H10O7 (302.0427)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Nonacosane

EINECS 211-126-2

C29H60 (408.4695)


Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1]. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1].

   

dictamine

4-27-00-02030 (Beilstein Handbook Reference)

C12H9NO2 (199.0633)


Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities. Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities.

   

Skimmianin

InChI=1\C14H13NO4\c1-16-10-5-4-8-11(13(10)18-3)15-14-9(6-7-19-14)12(8)17-2\h4-7H,1-3H

C14H13NO4 (259.0845)


Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].

   

Fagarine

4-27-00-02211 (Beilstein Handbook Reference)

C13H11NO3 (229.0739)


   

(1r,3ar,3br,7s,9ar,9br,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3ar,3br,7s,9ar,9br,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H50O (414.3861)


   

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.439)


   

(1s,3ar,3br,7r,9as,9br,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1s,3ar,3br,7r,9as,9br,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H50O (414.3861)


   

3-{[(2r,3s,4s,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

3-{[(2r,3s,4s,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

C20H18O11 (434.0849)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3as,3bs,7s,9ar,9br,11as)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3as,3bs,7s,9ar,9br,11as)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.439)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

3-{[(2s,3r,4s,5s,6r)-6-({[(2r,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

3-{[(2s,3r,4s,5s,6r)-6-({[(2r,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

C26H28O16 (596.1377)


   

3-{[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

3-{[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

C20H18O11 (434.0849)


   

3-{[6-({[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

3-{[6-({[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

C26H28O16 (596.1377)