NCBI Taxonomy: 126431
Jasminum nudiflorum (ncbi_taxid: 126431)
found 31 associated metabolites at species taxonomy rank level.
Ancestor: Jasminum
Child Taxonomies: none taxonomy data.
Syringin
Syringin is a monosaccharide derivative that is trans-sinapyl alcohol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. It has a role as a hepatoprotective agent and a plant metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a primary alcohol and a dimethoxybenzene. It is functionally related to a trans-sinapyl alcohol. Syringin is a natural product found in Salacia chinensis, Codonopsis lanceolata, and other organisms with data available. See also: Codonopsis pilosula root (part of). A monosaccharide derivative that is trans-sinapyl alcohol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2]. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2].
methyloleoside
C17H24O11 (404.13185539999995)
Oleoside 11-methyl ester is a natural product found in Jasminum nudiflorum, Picconia excelsa, and other organisms with data available.
syringin
Syringin, also known as eleutheroside b or beta-terpineol, is a member of the class of compounds known as phenolic glycosides. Phenolic glycosides are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Syringin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Syringin can be found in caraway, fennel, and lemon, which makes syringin a potential biomarker for the consumption of these food products. Syringin is a natural chemical compound first isolated from the bark of lilac (Syringa vulgaris) by Meillet in 1841. It has since been found to be distributed widely throughout many types of plants. It is also called eleutheroside B, and is found in Eleutherococcus senticosus (Siberian ginseng). It is also found in dandelion coffee . Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2]. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2].
2-(Hydroxymethyl)-6-[4-(3-hydroxyprop-1-enyl)-2,6-dimethoxyphenoxy]oxane-3,4,5-triol
methyl 5-ethylidene-4-(2-{[3-hydroxy-5-(1-hydroxypropan-2-yl)-2-methylcyclopentyl]methoxy}-2-oxoethyl)-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,6-dihydropyran-3-carboxylate
methyl 5-ethylidene-4-(2-{2-[4-({2-[3-ethylidene-5-(methoxycarbonyl)-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,4-dihydropyran-4-yl]acetyl}oxy)-2-[({2-[3-ethylidene-5-(methoxycarbonyl)-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,4-dihydropyran-4-yl]acetyl}oxy)methyl]-3-methylcyclopentyl]propoxy}-2-oxoethyl)-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,6-dihydropyran-3-carboxylate
(4s,5e,6s)-5-ethylidene-4-(2-{[(1s,2r,3s,4s)-3-[({2-[(2s,3e,4s)-3-ethylidene-5-(methoxycarbonyl)-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,4-dihydropyran-4-yl]acetyl}oxy)methyl]-4-[(2s)-1-hydroxypropan-2-yl]-2-methylcyclopentyl]oxy}-2-oxoethyl)-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,6-dihydropyran-3-carboxylic acid
(2s,3r,4s,5r,6s)-2-(hydroxymethyl)-6-{4-[(1e)-3-hydroxyprop-1-en-1-yl]-2,6-dimethoxyphenoxy}oxane-3,4,5-triol
methyl (4s,5e,6s)-5-ethylidene-4-(2-{[(1s,2r,3s,5s)-3-({2-[(2s,3e,4s)-3-ethylidene-5-(methoxycarbonyl)-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,4-dihydropyran-4-yl]acetyl}oxy)-5-[(2s)-1-hydroxypropan-2-yl]-2-methylcyclopentyl]methoxy}-2-oxoethyl)-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,6-dihydropyran-3-carboxylate
methyl (4s,5e,6s)-5-ethylidene-4-(2-{[(1s,2r,3r,4s)-3-(hydroxymethyl)-4-[(2s)-1-hydroxypropan-2-yl]-2-methylcyclopentyl]oxy}-2-oxoethyl)-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,6-dihydropyran-3-carboxylate
methyl (4s,5e,6s)-5-ethylidene-4-{2-[(2r)-2-[(1s,2r,3r,4s)-4-({2-[(2s,3e,4s)-3-ethylidene-5-(methoxycarbonyl)-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,4-dihydropyran-4-yl]acetyl}oxy)-2-(hydroxymethyl)-3-methylcyclopentyl]propoxy]-2-oxoethyl}-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,6-dihydropyran-3-carboxylate
[3-ethylidene-5-(methoxycarbonyl)-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,4-dihydropyran-4-yl]acetic acid
C17H24O11 (404.13185539999995)