NCBI Taxonomy: 125689
Epaltes (ncbi_taxid: 125689)
found 70 associated metabolites at genus taxonomy rank level.
Ancestor: Gnaphalieae
Child Taxonomies: Epaltes gariepina, Epaltes australis, Epaltes divaricata, Epaltes cunninghamii
Stigmasterol
Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol
alpha-Humulene
alpha-Humulene, also known as alpha-caryophyllene, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. Thus, alpha-humulene is considered to be an isoprenoid lipid molecule. alpha-Humulene is found in allspice. alpha-Humulene is a constituent of many essential oils including hops (Humulus lupulus) and cloves (Syzygium aromaticum). (1E,4E,8E)-alpha-humulene is the (1E,4E,8E)-isomer of alpha-humulene. Humulene is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. See also: Caryophyllene (related). α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].
trans-beta-Farnesene
Trans-beta-farnesene is a beta-farnesene in which the double bond at position 6-7 has E configuration. It is the major or sole alarm pheromone in most species of aphid. It has a role as an alarm pheromone and a metabolite. beta-Farnesene is a natural product found in Nepeta nepetella, Eupatorium capillifolium, and other organisms with data available. trans-beta-Farnesene, also known as (E)-β-Farnesene or (E)-7,11-Dimethyl-3-methylenedodeca-1,6,10-triene, is classified as a member of the Sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. trans-beta-Farnesene is a hydrocarbon lipid molecule. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].
Cedrelanol
A cadinane sesquiterpenoid that is cadin-4-ene carrying a hydroxy substituent at position 10.
beta-Farnesene
A mixture with 1,3,6,10-Farnesatetraene
Cedrelanol
Constituent of Juniperus communis (juniper). Cedrelanol is found in many foods, some of which are fruits, sweet basil, lemon balm, and hyssop. Cedrelanol is found in fruits. Cedrelanol is a constituent of Juniperus communis (juniper).
alpha-Caryophyllene
α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].
Taraxasterol acetate
Taraxasterol acetate, also known as urs-20(30)-en-3-ol acetate, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Taraxasterol acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Taraxasterol acetate can be found in burdock, which makes taraxasterol acetate a potential biomarker for the consumption of this food product.
Stigmasterol
Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.
Humulene
α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].
Farnesene
Isol. (without stereochemical distinction) from oil of Cymbopogon nardus (citronella), Cananga odorata (ylang ylang) and others (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].
(1S,2E,10R)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene
(2e,6e)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene
(1s,2r,4ar,8ar)-7-(2-hydroperoxypropan-2-yl)-1-hydroxy-1,4a-dimethyl-6-oxo-3,4,5,8a-tetrahydro-2h-naphthalen-2-yl (2z)-2-methylbut-2-enoate
(7ar)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol
(1r,2s,4ar,8ar)-1-(acetyloxy)-7-(2-hydroxypropan-2-yl)-1,4a-dimethyl-6-oxo-3,4,5,8a-tetrahydro-2h-naphthalen-2-yl (2r)-2-methylbutanoate
1-hydroxy-1,4a-dimethyl-6-oxo-7-(propan-2-ylidene)-hexahydronaphthalen-2-yl 2,3-dimethyloxirane-2-carboxylate
1-hydroxy-7-(2-hydroxypropan-2-yl)-1,4a-dimethyl-6-oxo-3,4,5,8a-tetrahydro-2h-naphthalen-2-yl 2,3-dimethyloxirane-2-carboxylate
1-(acetyloxy)-7-(2-hydroperoxypropan-2-yl)-1,4a-dimethyl-6-oxo-3,4,5,8a-tetrahydro-2h-naphthalen-2-yl 2,3-dimethyloxirane-2-carboxylate
(1s,2s,4ar,8ar)-1-hydroxy-7-(2-hydroxypropan-2-yl)-1,4a-dimethyl-6-oxo-3,4,5,8a-tetrahydro-2h-naphthalen-2-yl (2r)-2-methylbutanoate
1-hydroxy-7-(2-hydroxypropan-2-yl)-1,4a-dimethyl-6-oxo-3,4,5,8a-tetrahydro-2h-naphthalen-2-yl 2-methylbutanoate
1-(acetyloxy)-7-(2-hydroxypropan-2-yl)-1,4a-dimethyl-6-oxo-3,4,5,8a-tetrahydro-2h-naphthalen-2-yl 2-methylbutanoate
(1s,2r,4ar,8ar)-7-(2-hydroperoxypropan-2-yl)-1-hydroxy-1,4a-dimethyl-6-oxo-3,4,5,8a-tetrahydro-2h-naphthalen-2-yl (2r,3r)-2,3-dimethyloxirane-2-carboxylate
2-chloro-1-[5'-(prop-1-yn-1-yl)-[2,2'-bithiophen]-5-yl]ethanol
1-hydroxy-1,4a-dimethyl-6-oxo-7-(propan-2-ylidene)-hexahydronaphthalen-2-yl 2,3-dihydroxy-2-methylbutanoate
(2s)-1-chloro-4-[5-(penta-1,3-diyn-1-yl)thiophen-2-yl]but-3-yn-2-ol
C13H9ClOS (248.00626139999997)
(1s,2r,4ar,8ar)-1-hydroxy-1,4a-dimethyl-6-oxo-7-(propan-2-ylidene)-hexahydronaphthalen-2-yl (2s,3r)-2,3-dimethyloxirane-2-carboxylate
(1s,2s,4ar,8ar)-1-(acetyloxy)-1,4a-dimethyl-6-oxo-7-(propan-2-ylidene)-hexahydronaphthalen-2-yl (2r)-2-methylbutanoate
(1s,2s,4ar,8ar)-1-(acetyloxy)-7-(2-hydroxypropan-2-yl)-1,4a-dimethyl-6-oxo-3,4,5,8a-tetrahydro-2h-naphthalen-2-yl (2r)-2-methylbutanoate
(2s)-2-[(4ar,8s,8ar)-4a,8-dimethyl-4,5,6,7,8,8a-hexahydro-1h-naphthalen-2-yl]propane-1,2-diol
(1s,2s,4ar,8ar)-1-hydroxy-1,4a-dimethyl-6-oxo-7-(propan-2-ylidene)-hexahydronaphthalen-2-yl (2r)-2-methylbutanoate
(1s,2r,4ar,8ar)-1-(acetyloxy)-1,4a-dimethyl-6-oxo-7-(propan-2-ylidene)-hexahydronaphthalen-2-yl (2s,3r)-2,3-dimethyloxirane-2-carboxylate
1-(acetyloxy)-1,4a-dimethyl-6-oxo-7-(propan-2-ylidene)-hexahydronaphthalen-2-yl 2,3-dimethyloxirane-2-carboxylate
7-(2-hydroperoxypropan-2-yl)-1-hydroxy-1,4a-dimethyl-6-oxo-3,4,5,8a-tetrahydro-2h-naphthalen-2-yl 2-methylbut-2-enoate
1-chloro-4-[5-(penta-1,3-diyn-1-yl)thiophen-2-yl]but-3-yn-2-ol
C13H9ClOS (248.00626139999997)