Gene Association: NLE1

UniProt Search: NLE1 (PROTEIN_CODING)
Function Description: notchless homolog 1

found 6 associated metabolites with current gene based on the text mining result from the pubmed database.

Angiotensin IV

(2S)-2-({[(2S)-1-[(2S)-2-{[(2S,3S)-2-{[(2S)-2-{[(2S)-2-amino-1-hydroxy-3-methylbutylidene]amino}-1-hydroxy-3-(4-hydroxyphenyl)propylidene]amino}-1-hydroxy-3-methylpentylidene]amino}-3-(1H-imidazol-5-yl)propanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-3-phenylpropanoate

C40H54N8O8 (774.4064)


Angiotensin IV is one of the N-terminal angiotensin degradation products of angiotensin II. Angiotensin IV (AngIV) mediates important physiologic functions in the central nervous system, including blood flow regulation, processes underlying to learning and memory, and presents anticonvulsant activity. The presence of AngIV-specific binding sites has been identified in various mammalian tissues, including blood vessels, heart, kidney, and brain. Besides the presence of AngIV binding sites in the cardiovascular system, the major AngIV synthesizing enzymes aminopeptidase N (APN) and aminopeptidase B (APB) are also expressed in different cell types of this system. AngIV activates several protein kinases, including phosphatidylinositol 3 kinase, PI-dependent kinase-1, extracellular signal-related kinases (ERK), protein kinase B-α/Akt, and p70 ribosomal S6 kinase. AngIV could contribute to vascular damage, increasing the production of monocyte chemoattractant protein-1, the main chemokine involved in monocyte recruitment, and up-regulates the expression of the adhesion molecule intercellular adhesion molecule-1 that is involved in the attachment and transmigration of circulating cells into the damaged tissue. (PMID: 17210474) [HMDB] Angiotensin IV is one of the N-terminal angiotensin degradation products of angiotensin II. Angiotensin IV (AngIV) mediates important physiologic functions in the central nervous system, including blood flow regulation, processes underlying to learning and memory, and presents anticonvulsant activity. The presence of AngIV-specific binding sites has been identified in various mammalian tissues, including blood vessels, heart, kidney, and brain. Besides the presence of AngIV binding sites in the cardiovascular system, the major AngIV synthesizing enzymes aminopeptidase N (APN) and aminopeptidase B (APB) are also expressed in different cell types of this system. AngIV activates several protein kinases, including phosphatidylinositol 3 kinase, PI-dependent kinase-1, extracellular signal-related kinases (ERK), protein kinase B-α/Akt, and p70 ribosomal S6 kinase. AngIV could contribute to vascular damage, increasing the production of monocyte chemoattractant protein-1, the main chemokine involved in monocyte recruitment, and up-regulates the expression of the adhesion molecule intercellular adhesion molecule-1 that is involved in the attachment and transmigration of circulating cells into the damaged tissue. (PMID: 17210474). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

L-Norleucine

(S)-2-amino-Hexanoic acid

C6H13NO2 (131.0946)


L-Norleucine, also known as L-aminohexanoate or caprine, belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Thus, L-norleucine is considered to be a fatty acid lipid molecule. An unnatural amino acid that is used experimentally to study protein structure and function. L-Norleucine is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. L-Norleucine exists in all eukaryotes, ranging from yeast to humans. Outside of the human body, L-Norleucine has been detected, but not quantified in cow milk. This could make L-norleucine a potential biomarker for the consumption of these foods. It binds reversibly to the kringle domain of plasminogen and blocks the binding of plasminogen to fibrin and its activation to plasmin. An unnatural amino acid that is used experimentally to study protein structure and function. It is structurally similar to methionine, however it does not contain sulfur. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 22 KEIO_ID N014 L-Norleucine ((S)-2-Aminohexanoic acid) is an isomer of leucine, specifically affects protein synthesis in skeletal muscle, and has antivirus activity.

   

1-[(4-Amino-3-methylphenyl)methyl]-5-(2,2-diphenylacetyl)-6,7-dihydro-4H-imidazo[4,5-c]pyridine-6-carboxylic acid

1-((4-Amino-3-methylphenyl)methyl)-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo(4,5C)pyridine-6-carboxylic acid

C29H28N4O3 (480.2161)


   

L-Norleucine

(2S)-2-aminohexanoic acid

C6H13NO2 (131.0946)


A non-proteinogenic L-alpha-amino acid comprising hexanoic acid carrying an amino group at C-2. It does not occur naturally. L-Norleucine ((S)-2-Aminohexanoic acid) is an isomer of leucine, specifically affects protein synthesis in skeletal muscle, and has antivirus activity.

   

Angiotensin IV

Angiotensin II, 1-des-asn-2-arg

C40H54N8O8 (774.4064)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

PD 123177

1-[(4-Amino-3-methylphenyl)methyl]-5-(2,2-diphenylacetyl)-6,7-dihydro-4H-imidazo[4,5-c]pyridine-6-carboxylic acid

C29H28N4O3 (480.2161)