Gene Association: ACOT8

UniProt Search: ACOT8 (PROTEIN_CODING)
Function Description: acyl-CoA thioesterase 8

found 24 associated metabolites with current gene based on the text mining result from the pubmed database.

Soyasaponin I

(2S,3S,4S,5R,6R)-6-{[(3S,4S,4aR,6aR,6bS,8aR,9R,12aS,14aR,14bR)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-5-{[(2S,3R,4S,5R,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C48H78O18 (942.5188)


Soyasaponin I is a triterpenoid saponin that is composed of soyasapogenol B having an alpha-L-rhamnopyranosyl-(1->2)-beta-D-galactopyranosyl-(1->2)-beta-D-glucopyranosiduronic acid moiety attached at the 3-position via a glycosidic linkage. It has a role as a sialyltransferase inhibitor. It is a pentacyclic triterpenoid, a triterpenoid saponin, a trisaccharide derivative and a carbohydrate acid derivative. It is functionally related to a soyasapogenol B. It is a conjugate acid of a soyasaponin I(1-). Soyasaponin I is a natural product found in Crotalaria albida, Hedysarum polybotrys, and other organisms with data available. A triterpenoid saponin that is composed of soyasapogenol B having an alpha-L-rhamnopyranosyl-(1->2)-beta-D-galactopyranosyl-(1->2)-beta-D-glucopyranosiduronic acid moiety attached at the 3-position via a glycosidic linkage. Azukisaponin V is found in pulses. Azukisaponin V is isolated from seeds of azuki bean (Vigna angularis). soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1]. soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1].

   

Decanoyl-CoA (n-C10:0CoA)

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-[({[({3-[(2-{[2-(decanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C31H54N7O17P3S (921.251)


Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752) [HMDB] Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Etomidate

(R)-(+)-1-(alpha-Methylbenzyl)imidazole-5-carboxylic acid ethyl ester

C14H16N2O2 (244.1212)


Etomidate is only found in individuals that have used or taken this drug. It is an midazole derivative anesthetic and hypnotic with little effect on blood gases, ventilation, or the cardiovascular system. It has been proposed as an induction anesthetic. [PubChem]Etomidate binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Heptanoic acid

1-Hexanecarboxylic acid

C7H14O2 (130.0994)


Heptanoic acid, or C7:0 also known as enanthic acid or heptylic acid, belongs to the class of organic compounds known as medium-chain fatty acids. Medium-chain fatty acids (MCFA) are fatty acids with aliphatic tails of 6 to 12 carbons, which can form medium-chain triglycerides Heptanoic acid is an oily liquid with an unpleasant, rancid odor. It contributes to the odor of some rancid oils. It is slightly soluble in water, but very soluble in ethanol and ether. Its name derives from the Latin oenanthe which is in turn derived from the Ancient Greek oinos "wine" and anthos "blossom." Heptanoic acid is used in the preparation of esters, such as ethyl enanthate, which are used in fragrances and as artificial flavors. The triglyceride ester of heptanoic acid is the triheptanoin, which is used in certain medical conditions as a nutritional supplement. Present in essential oils, e.g. violet leaf oil, palm oiland is also present in apple, feijoa fruit, strawberry jam, clove bud, ginger, black tea, morello cherry, grapes, rice bran and other foodstuffs. Flavouring ingredient. It is used as one of the components in washing solns. used to assist lye peeling of fruit and vegetables

   

Glutaryl-CoA

5-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-5-oxopentanoic acid

C26H42N7O19P3S (881.1469)


Glutaryl-CoA is a substrate for 2-oxoglutarate dehydrogenase E1 component (mitochondrial), Dihydrolipoyllysine-residue succinyltransferase component of 2- oxoglutarate dehydrogenase complex (mitochondrial) and Glutaryl-CoA dehydrogenase (mitochondrial). [HMDB] Glutaryl-CoA is a substrate for 2-oxoglutarate dehydrogenase E1 component (mitochondrial), Dihydrolipoyllysine-residue succinyltransferase component of 2- oxoglutarate dehydrogenase complex (mitochondrial) and Glutaryl-CoA dehydrogenase (mitochondrial).

   

Choloyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-2,2-dimethyl-3-[(2-{[2-({4-[(1S,5R,9R,11S,16S)-5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanoyl}sulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C45H74N7O20P3S (1157.3922)


Choloyl-CoA is an intermediate metabolite in the Bile acid biosynthesis (KEGG). The conjugation of bile acids to glycine and taurine for excretion into bile occurs via a reaction catalyzed by the enzyme Bile acid-CoA:amino acid N-acyltransferase (BACAT) catalyzes. Choloyl-CoA is an intermediate metabolite in the Bile acid biosynthesis (KEGG) D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids

   

Phytanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[3-hydroxy-2,2-dimethyl-3-({2-[(2-{[(3S,7R,11R)-3,7,11,15-tetramethylhexadecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H74N7O17P3S (1061.4075)


Phytanoyl CoA is a coenzyme A derivative of phytanic acid. Phytanic acid is present in human diet or in animal tissues where it may be derived from chlorophyll in plant extracts. Specifically it is an epimeric metabolite of the isoprenoid side chain of chlorophyll. Owing to the presence of its epimeric beta-methyl group, phytanic acid cannot be metabolized by beta-oxidation. Instead, it is metabolized in peroxisomes via alpha-oxidation to give pristanic acid, which is then oxidized by beta-oxidation. PhyH (phytanoyl-CoA 2-hydroxylase) catalyses hydroxylation of phytanoyl-CoA. Mutations of PhyH can lead to phytanic acid accumulation. High levels of phytanic acid are found in patients suffering from Refsums syndrome. This inherited neurological disorder is characterized by an accumulation of phytanic acid in blood and tissues. Clinically it is characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia. This disorder has been found to be related to deficiency in the α-oxidation pathway in the liver. (PMID: 17956235). Phytanoyl CoA and other branched-chain fatty acid CoA products are potent inducers of the peroxisome proliferator-activated receptor PPARalpha, a nuclear receptor that enhances transcription of peroxisomal enzymes mediating beta-oxidation of these potentially toxic fatty acids (PMID: 16768463). Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase are strongly inhibited by phytanoyl-CoA. Decreased activity of these important mitochondrial metabolism complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease (PMID: 16737698). [HMDB] Phytanoyl CoA is a coenzyme A derivative of phytanic acid. Phytanic acid is present in human diet or in animal tissues where it may be derived from chlorophyll in plant extracts. Specifically it is an epimeric metabolite of the isoprenoid side chain of chlorophyll. Owing to the presence of its epimeric beta-methyl group, phytanic acid cannot be metabolized by beta-oxidation. Instead, it is metabolized in peroxisomes via alpha-oxidation to give pristanic acid, which is then oxidized by beta-oxidation. PhyH (phytanoyl-CoA 2-hydroxylase) catalyses hydroxylation of phytanoyl-CoA. Mutations of PhyH can lead to phytanic acid accumulation. High levels of phytanic acid are found in patients suffering from Refsums syndrome. This inherited neurological disorder is characterized by an accumulation of phytanic acid in blood and tissues. Clinically it is characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia. This disorder has been found to be related to deficiency in the α-oxidation pathway in the liver. (PMID: 17956235). Phytanoyl CoA and other branched-chain fatty acid CoA products are potent inducers of the peroxisome proliferator-activated receptor PPARalpha, a nuclear receptor that enhances transcription of peroxisomal enzymes mediating beta-oxidation of these potentially toxic fatty acids (PMID: 16768463). Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase are strongly inhibited by phytanoyl-CoA. Decreased activity of these important mitochondrial metabolism complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease (PMID: 16737698).

   

Chenodeoxycholoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[3-({2-[(2-{[(4R)-4-[(1S,2S,5R,7S,9R,10R,11S,14R,15R)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C45H74N7O19P3S (1141.3973)


Chenodeoxycholoyl-CoA is bile acid Coenzyme A ester. In humans, bile acids conjugated with glycine and taurine are the major solutes in bile, and unconjugated bile acids are almost nondetectable in normal bile. Conjugated bile acids are less toxic and are more efficient promoters of intestinal absorption of dietary lipid than unconjugated bile acids. The synthesis of bile acid and amino acid conjugates in human liver is the result of two independent enzymatic reactions with a bile acid coenzyme A thioester intermediate formation of bile acid-CoA esters, considered the rate-limiting step in bile acid amidation and catalyzed by an ATP-dependent microsomal enzyme, bile acid-CoA synthetase (EC 6.2.1.7). In the second reaction, the thioester bond is cleaved, and an amide bond is formed between the bile acid and the amino acids glycine or taurine. The bile acid-CoA:amino acid N-acyltransferase (EC 2.3.1.65) catalyzes this reaction in the cytosol prior to secretion into bile. In human liver the formation of bile acid-CoA thioesters is localized both to the microsomal fraction catalysed by an ATP-dependent synthetase and to the peroxisomal fraction catalysed by the thiolase in the last step of the beta-oxidative cleavage of the 5beta-cholestanoyl side chain. The highest specific amidation activity of both chenodeoxycholoyl-CoA is always found in the most peroxisome-rich subcellular fractions. (PMID: 2722825, 10817395, 11673457, 10884298).

   

3a,7a,12a-Trihydroxy-5b-cholestanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-({2-[(2-{[(6R)-2-methyl-6-[(1S,2S,5R,7S,9R,10R,11S,14R,15R,16S)-5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]heptanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C48H80N7O20P3S (1199.4391)


3a,7a,12a-Trihydroxy-5b-cholestanoyl-CoA is an intermediate in the Bile acid biosynthesis pathway (KEGG). C27-bile acyl-CoAs are converted to their (S)-stereoisomers by the enzyme Alpha-methylacyl-CoA racemase (OMIM 604489). 3a,7a,12a-Trihydroxy-5b-cholestanoyl-CoA is an intermediate in the Bile acid biosynthesis pathway (KEGG)

   

Adipoyl-CoA

6-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-6-oxohexanoic acid

C27H44N7O19P3S (895.1625)


Adipoyl-CoA is formed as the degradation beta-oxidation product (CoA ester) of the dicarboxylic acid formed via w-oxidation of fatty acids in the endoplasmic reticulum. Fatty acid oxidation is an important source of energy, especially during fasting and diabetes. Although mitochondria are considered the primary site for beta-oxidation of fatty acids for energy utilization, peroxisomes play a key role in the metabolism of a variety of lipids such as very long-chain fatty acids, branched-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. Acyl-CoA thioesterases (ACOTs) are a family of enzymes that catalyze the hydrolysis of the CoA esters of various lipids to the free acids and coenzyme A. Acyl-CoA hydrolase 8 (ACOT8, EC 3.1.2.20) preferentially hydrolyzes medium-chain dicarboxylyl-CoA esters such as Adipoyl-CoA and is responsible for the termination of beta-oxidation of dicarboxylic acids of medium-chain length with the concomitant release of the corresponding free acids. In mitochondria, Adipoyl-CoA is a substrate of the enzyme Hydroxymethylglutarate coenzyme A-transferase (E.C. 2.8.3.13). Both synthesis and degradation of dicarboxylic acids occur mainly in kidney and liver, and the chain-shortened dicarboxylic acids are excreted in the urine as the free acids. (PMID: 16141203) [HMDB] Adipoyl-CoA is formed as the degradation beta-oxidation product (CoA ester) of the dicarboxylic acid formed via w-oxidation of fatty acids in the endoplasmic reticulum. Fatty acid oxidation is an important source of energy, especially during fasting and diabetes. Although mitochondria are considered the primary site for beta-oxidation of fatty acids for energy utilization, peroxisomes play a key role in the metabolism of a variety of lipids such as very long-chain fatty acids, branched-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. Acyl-CoA thioesterases (ACOTs) are a family of enzymes that catalyze the hydrolysis of the CoA esters of various lipids to the free acids and coenzyme A. Acyl-CoA hydrolase 8 (ACOT8, EC 3.1.2.20) preferentially hydrolyzes medium-chain dicarboxylyl-CoA esters such as Adipoyl-CoA and is responsible for the termination of beta-oxidation of dicarboxylic acids of medium-chain length with the concomitant release of the corresponding free acids. In mitochondria, Adipoyl-CoA is a substrate of the enzyme Hydroxymethylglutarate coenzyme A-transferase (E.C. 2.8.3.13). Both synthesis and degradation of dicarboxylic acids occur mainly in kidney and liver, and the chain-shortened dicarboxylic acids are excreted in the urine as the free acids. (PMID: 16141203).

   

decanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-[(2-{[2-(decanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C31H54N7O17P3S (921.251)


Decanoyl-coa, also known as 10:0-coa or decanoyl-coenzyme a, is a member of the class of compounds known as 2,3,4-saturated fatty acyl coas. 2,3,4-saturated fatty acyl coas are acyl-CoAs carrying a 2,3,4-saturated fatty acyl chain. Thus, decanoyl-coa is considered to be a fatty ester lipid molecule. Decanoyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Decanoyl-coa can be synthesized from decanoic acid and coenzyme A. Decanoyl-coa can also be synthesized into 3-oxodecanoyl-CoA. Decanoyl-coa can be found in a number of food items such as swede, triticale, ohelo berry, and moth bean, which makes decanoyl-coa a potential biomarker for the consumption of these food products. Decanoyl-coa may be a unique S.cerevisiae (yeast) metabolite.

   

FA 7:0

n-heptanoic acid

C7H14O2 (130.0994)


   

Decanoyl-CoA (n-C10:0CoA)

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-[({[({3-[(2-{[2-(decanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C31H54N7O17P3S (921.251)


Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752) [HMDB] Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

HEPTANOIC ACID

n-heptanoic acid

C7H14O2 (130.0994)


A C7, straight-chain fatty acid that contributes to the odour of some rancid oils. Used in the preparation of esters for the fragrance industry, and as an additive in cigarettes.

   

Heptylic acid

n-heptanoic acid

C7H14O2 (130.0994)


   

CoA 10:0

3-phosphoadenosine 5-(3-{(3R)-4-[(3-{[2-(decanoylsulfanyl)ethyl]amino}-3-oxopropyl)amino]-3-hydroxy-2,2-dimethyl-4-oxobutyl} dihydrogen diphosphate)

C31H54N7O17P3S (921.251)


   

Glutaryl-CoA

3-phosphoadenosine 5-{3-[(3R)-4-{[3-({2-[(4-carboxybutanoyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-3-hydroxy-2,2-dimethyl-4-oxobutyl] dihydrogen diphosphate}

C26H42N7O19P3S (881.1469)


An omega-carboxyacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with one of the carboxy groups of glutaric acid.

   

Ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate

Ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate

C14H16N2O2 (244.1212)


   

SCM 3B

(2S,3S,4S,5R,6R)-6-[[(3S,4S,4aR,6aR,6bS,8aR,9R,12aS,14aR,14bR)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-5-[[(2S,3R,4S,5R,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[[(2S,3R,4

C48H78O18 (942.5188)


soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1]. soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1].

   

WLN: QV6

InChI=1\C7H14O2\c1-2-3-4-5-6-7(8)9\h2-6H2,1H3,(H,8,9

C7H14O2 (130.0994)


   

decanoyl-CoA

decanoyl-CoA

C31H54N7O17P3S (921.251)


A medium-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of decanoic acid.

   

Choloyl-CoA

Choloyl-CoA

C45H74N7O20P3S (1157.3922)


A steroidal acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of cholic acid. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids

   

Chenodeoxycholoyl-CoA

Chenodeoxycholoyl-CoA

C45H74N7O19P3S (1141.3973)


A choloyl-CoA formed by thioester linkage between chenodeoxycholic acid and coenzyme A.

   

Adipyl-CoA

6-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-6-oxohexanoic acid

C27H44N7O19P3S (895.1625)


An alpha,omega dicarboxyacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with one of the carboxy groups of adipic acid.