Exact Mass: 1141.3973
Exact Mass Matches: 1141.3973
Found 15 metabolites which its exact mass value is equals to given mass value 1141.3973
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Chenodeoxycholoyl-CoA
Chenodeoxycholoyl-CoA is bile acid Coenzyme A ester. In humans, bile acids conjugated with glycine and taurine are the major solutes in bile, and unconjugated bile acids are almost nondetectable in normal bile. Conjugated bile acids are less toxic and are more efficient promoters of intestinal absorption of dietary lipid than unconjugated bile acids. The synthesis of bile acid and amino acid conjugates in human liver is the result of two independent enzymatic reactions with a bile acid coenzyme A thioester intermediate formation of bile acid-CoA esters, considered the rate-limiting step in bile acid amidation and catalyzed by an ATP-dependent microsomal enzyme, bile acid-CoA synthetase (EC 6.2.1.7). In the second reaction, the thioester bond is cleaved, and an amide bond is formed between the bile acid and the amino acids glycine or taurine. The bile acid-CoA:amino acid N-acyltransferase (EC 2.3.1.65) catalyzes this reaction in the cytosol prior to secretion into bile. In human liver the formation of bile acid-CoA thioesters is localized both to the microsomal fraction catalysed by an ATP-dependent synthetase and to the peroxisomal fraction catalysed by the thiolase in the last step of the beta-oxidative cleavage of the 5beta-cholestanoyl side chain. The highest specific amidation activity of both chenodeoxycholoyl-CoA is always found in the most peroxisome-rich subcellular fractions. (PMID: 2722825, 10817395, 11673457, 10884298).
Deoxycholoyl-CoA
A steroidal acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of deoxycholic acid.
Deoxycholoyl-CoA
This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.
Chenodeoxyglycocholoyl-CoA
Chenodeoxyglycocholoyl-CoA is a coenzyme A derivative of chenodeoxyglycocholate. It is involved in bile acid synthesis and is the penultimate component in the synthesis of chenodeoxyglycocholate. Chenodeoxyglycocholoyl-CoA is synthesized from 3a,7a-dihydroxy-5b-24-oxocholestanoyl-CoA via acetyl-CoA acyltransferase, it is then transformed via glycine N-choloyltransferase to chenodeoxyglycocholate. Chenodeoxyglycocholate is a glycine conjugated bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135).
15-(3-methyl-5-pentylfuran-2-yl)pentadecanoyl-CoA
15-(3-methyl-5-pentylfuran-2-yl)pentadecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 15-(3-methyl-5-pentylfuran-2-yl)pentadecanoic acid thioester of coenzyme A. 15-(3-methyl-5-pentylfuran-2-yl)pentadecanoyl-coa is an acyl-CoA with 24 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 15-(3-methyl-5-pentylfuran-2-yl)pentadecanoyl-coa is therefore classified as a very long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 15-(3-methyl-5-pentylfuran-2-yl)pentadecanoyl-coa, being a very long chain acyl-CoA is a substrate for very long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 15-(3-methyl-5-pentylfuran-2-yl)pentadecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 15-(3-methyl-5-pentylfuran-2-yl)pentadecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 15-(3-methyl-5-pentylfuran-2-yl)pentadecanoyl-CoA into 15-(3-methyl-5-pentylfuran-2-yl)pentadecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 15-(3-methyl-5-pentylfuran-2-yl)pentadecanoylcarnitine is converted back to 15-(3-methyl-5-pentylfuran-2-yl)pentadecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 15-(3-methyl-5-pentylfuran-2-yl)pentadecanoyl-CoA occurs in four steps. First, since 15-(3-methyl-5-pentylfuran-2-yl)pentadecanoyl-CoA is a very long chain acyl-CoA it is the substrate for a very l...
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (4R)-4-[(3R,5R,8R,9S,10S,12S,13R,14S)-3,12-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanethioate
S-[2-[3-[[4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (4R)-4-[(3R,5S,7S,10S,13R)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanethioate
Chenodeoxycholoyl-CoA
A choloyl-CoA formed by thioester linkage between chenodeoxycholic acid and coenzyme A.