Exact Mass: 989.5347724000001

Exact Mass Matches: 989.5347724000001

Found 24 metabolites which its exact mass value is equals to given mass value 989.5347724000001, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Deforolimus

Ridaforolimus (Deforolimus, MK-8669)

C53H84NO14P (989.5629134)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor Same as: D08900

   

Cobinamide

[(1R,2R,3S,4S,6Z,8S,9S,11Z,14S,18R,19R)-4,9,14-tris(2-carbamoylethyl)-3,8,19-tris(carbamoylmethyl)-18-(2-{[(2R)-2-hydroxypropyl]carbamoyl}ethyl)-2,3,6,8,13,13,16,18-octamethyl-20,21,22,23-tetraazapentacyclo[15.2.1.1^{2,5}.1^{7,10}.1^{12,15}]tricosa-5(23),6,10(22),11,15(21),16-hexaen-20-yl]cobaltbis(ylium)

C48H72CoN11O8- (989.4897032)


Cobinamide is an intermediate in porphyrin and chlorophyll metabolism. It is converted to adenosyl cobinamide via the enzyme cob(I)alamin adenosyltransferase [EC:2.5.1.17]. Adenosyl cobinamide is the third to last step in the synthesis of vitamin B12 coenzyme. [HMDB] Cobinamide is an intermediate in porphyrin and chlorophyll metabolism. It is converted to adenosyl cobinamide via the enzyme cob(I)alamin adenosyltransferase [EC:2.5.1.17]. Adenosyl cobinamide is the third to last step in the synthesis of vitamin B12 coenzyme.

   

Deforolimus

4-(2-{1,18-dihydroxy-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-2,3,10,14,20-pentaoxo-11,36-dioxa-4-azatricyclo[30.3.1.0^{4,9}]hexatriaconta-16,24,26,28-tetraen-12-yl}propyl)-2-methoxycyclohexyl dimethylphosphinate

C53H84NO14P (989.5629134)


   

PI(16:2(9Z,12Z)/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]-3-{[hydroxy({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphoryl]oxy}propan-2-yl]oxy}-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C48H80NO16PS (989.493517)


PI(16:2(9Z,12Z)/LTE4) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:2(9Z,12Z)/LTE4), in particular, consists of one chain of 9Z,12Z-hexadecenoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(LTE4/16:2(9Z,12Z))

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-2-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]-3-{[hydroxy({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphoryl]oxy}propoxy]-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C48H80NO16PS (989.493517)


PI(LTE4/16:2(9Z,12Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(LTE4/16:2(9Z,12Z)), in particular, consists of one chain of Leukotriene E4 at the C-1 position and one chain of 9Z,12Z-hexadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   
   

Saralasin acetate(34273-10-4 free base)

Saralasin acetate(34273-10-4 free base)

C44H71N13O13 (989.5294035999999)


D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent

   

Ridaforolimus

Ridaforolimus (Deforolimus, MK-8669)

C53H84NO14P (989.5629134)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor

   

Ridaforolimus (Deforolimus, MK-8669)

(1R,2R,4S)-4-{(2R)-2-[(3S,6R,7E,9R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,27-dihydroxy-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-1,5,11,28,29-pentaoxo-1,4,5,6,9,10,11,12,13,14,21,22,23,24,25,26,27,28,29,31,32,33,34,34a-tetracosahydro-3H-23,27-epoxypyrido[2,1-c][1,4]oxazacyclohentriacontin-3-yl]propyl}-2-methoxycyclohexyl dimethylphosphinate

C53H84NO14P (989.5629134)


   
   
   

(16E,24E,26E,28Z)-12-[1-(4-dimethylphosphoryloxy-3-methoxycyclohexyl)propan-2-yl]-1,18-dihydroxy-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-azatricyclo[30.3.1.04,9]hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentone

(16E,24E,26E,28Z)-12-[1-(4-dimethylphosphoryloxy-3-methoxycyclohexyl)propan-2-yl]-1,18-dihydroxy-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-azatricyclo[30.3.1.04,9]hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentone

C53H84NO14P (989.5629134)


   
   
   

2-[[(2R)-2-[(2R)-2-amino-3-[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulfanylpropanoyl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(2R)-2-amino-3-[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulfanylpropanoyl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H86N2O11PS+ (989.5689636000001)


   

2-[[(2R)-3-[(2R)-2-amino-3-[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulfanylpropanoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(2R)-2-amino-3-[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulfanylpropanoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H86N2O11PS+ (989.5689636000001)


   

42-(Dimethylphosphinate)rapamycin

Ridaforolimus (Deforolimus, MK-8669)

C53H84NO14P (989.5629134)


   

(1R,9S,12S,15R,16E,18R,19R,21R,23S,26E,28Z,30S,32S,35R)-12-[(2R)-1-[(1S,3R,4R)-4-dimethylphosphoryloxy-3-methoxycyclohexyl]propan-2-yl]-1,18-dihydroxy-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-azatricyclo[30.3.1.04,9]hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentone

(1R,9S,12S,15R,16E,18R,19R,21R,23S,26E,28Z,30S,32S,35R)-12-[(2R)-1-[(1S,3R,4R)-4-dimethylphosphoryloxy-3-methoxycyclohexyl]propan-2-yl]-1,18-dihydroxy-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-azatricyclo[30.3.1.04,9]hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentone

C53H84NO14P (989.5629134)


   
   

(2r)-2-amino-n-[(2r,3s,4s,5r,6r)-5-amino-2-{[(2s,3r,4r,5r,6s)-6-{[(2r,3s,4s,5r)-2-{[(2r,3s,4s,5s)-5-(4-{[3-({4-[(4-aminobutyl)amino]butyl}amino)propyl]carbamoyl}phenoxy)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxy}-3,5-dihydroxy-6-methylideneoxan-4-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-4-hydroxy-6-methyloxan-3-yl]propanimidic acid

(2r)-2-amino-n-[(2r,3s,4s,5r,6r)-5-amino-2-{[(2s,3r,4r,5r,6s)-6-{[(2r,3s,4s,5r)-2-{[(2r,3s,4s,5s)-5-(4-{[3-({4-[(4-aminobutyl)amino]butyl}amino)propyl]carbamoyl}phenoxy)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxy}-3,5-dihydroxy-6-methylideneoxan-4-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-4-hydroxy-6-methyloxan-3-yl]propanimidic acid

C44H75N7O18 (989.5168330000001)


   

(1s)-1-[(1r,3ar,3bs,7s,9ar,9br,11r,11ar)-11-(acetyloxy)-1,3a,3b-trihydroxy-7-{[(2r,4s,5r,6r)-5-{[(2s,4s,5r,6r)-5-{[(2s,4r,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethyl 2-(methylamino)benzoate

(1s)-1-[(1r,3ar,3bs,7s,9ar,9br,11r,11ar)-11-(acetyloxy)-1,3a,3b-trihydroxy-7-{[(2r,4s,5r,6r)-5-{[(2s,4s,5r,6r)-5-{[(2s,4r,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethyl 2-(methylamino)benzoate

C52H79NO17 (989.5347724000001)


   

2-amino-n-[5-amino-2-({6-[(2-{[5-(4-{[3-({4-[(4-aminobutyl)amino]butyl}amino)propyl]carbamoyl}phenoxy)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxy}-3,5-dihydroxy-6-methylideneoxan-4-yl)oxy]-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl}oxy)-4-hydroxy-6-methyloxan-3-yl]propanimidic acid

2-amino-n-[5-amino-2-({6-[(2-{[5-(4-{[3-({4-[(4-aminobutyl)amino]butyl}amino)propyl]carbamoyl}phenoxy)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxy}-3,5-dihydroxy-6-methylideneoxan-4-yl)oxy]-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl}oxy)-4-hydroxy-6-methyloxan-3-yl]propanimidic acid

C44H75N7O18 (989.5168330000001)


   

3-{[2,5-dibenzyl-15-(4-carbamimidoylbutyl)-6,13,16,21-tetrahydroxy-8-isopropyl-4,11-dimethyl-3,9,22-trioxo-10-oxa-2,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-c-hydroxycarbonimidoyl}-3-[(1-hydroxyhexylidene)amino]propanoic acid

3-{[2,5-dibenzyl-15-(4-carbamimidoylbutyl)-6,13,16,21-tetrahydroxy-8-isopropyl-4,11-dimethyl-3,9,22-trioxo-10-oxa-2,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-c-hydroxycarbonimidoyl}-3-[(1-hydroxyhexylidene)amino]propanoic acid

C50H71N9O12 (989.5221925999999)