Exact Mass: 988.6040474

Exact Mass Matches: 988.6040474

Found 134 metabolites which its exact mass value is equals to given mass value 988.6040474, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Pseudoginsenoside Rc1

{6-[(4,5-dihydroxy-2-{[16-hydroxy-2,6,6,10,11-pentamethyl-14-(6-methyl-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-3,4,5-trihydroxyoxan-2-yl}methyl acetic acid

C50H84O19 (988.5606514000001)


Pseudoginsenoside Rc1 is found in tea. Pseudoginsenoside Rc1 is a constituent of Panax pseudoginseng (ginseng). Constituent of Panax pseudoginseng (ginseng). Pseudoginsenoside Rc1 is found in tea.

   

Quinquenoside III

(3,4-Dihydroxy-6-{[16-hydroxy-2,6,6,10,11-pentamethyl-14-(6-methyl-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-yl]oxy}-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)methyl acetic acid

C50H84O19 (988.5606514000001)


Quinquenoside III is found in tea. Quinquenoside III is a constituent of American ginseng (Panax quinquefolium). Constituent of American ginseng (Panax quinquefolium). Quinquenoside III is found in tea.

   

CL(8:0/8:0/8:0/14:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] tetradecanoate

C47H90O17P2 (988.565295)


CL(8:0/8:0/8:0/14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/8:0/14:0) contains three chains of octanoic acid at the C1, C2 and C3 positions, one chain of tetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/8:0/i-14:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] 12-methyltridecanoate

C47H90O17P2 (988.565295)


CL(8:0/8:0/8:0/i-14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/8:0/i-14:0) contains three chains of octanoic acid at the C1, C2 and C3 positions, one chain of 12-methyltridecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/10:0/12:0)

[(2R)-1-decanoyloxy-3-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] dodecanoate

C47H90O17P2 (988.565295)


CL(8:0/8:0/10:0/12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/10:0/12:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of decanoic acid at the C3 position, one chain of dodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/10:0/i-12:0)

[(2R)-1-decanoyloxy-3-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] 10-methylundecanoate

C47H90O17P2 (988.565295)


CL(8:0/8:0/10:0/i-12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/10:0/i-12:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of decanoic acid at the C3 position, one chain of 10-methylundecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/11:0/11:0)

[(2R)-3-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] undecanoate

C47H90O17P2 (988.565295)


CL(8:0/8:0/11:0/11:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/11:0/11:0) contains two chains of octanoic acid at the C1 and C2 positions, two chains of undecanoic acid at the C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/10:0/10:0)

[(2R)-2-decanoyloxy-3-[[(2S)-3-[[(2R)-2-decanoyloxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxypropyl] decanoate

C47H90O17P2 (988.565295)


CL(8:0/10:0/10:0/10:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/10:0/10:0) contains one chain of octanoic acid at the C1 position, three chains of decanoic acid at the C2, C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

hemicalyculin A

{[2-(15-cyano-4,5,6,7,9,10,14-heptamethylpentadeca-8,10,12,14-tetraen-2-yl)-7-[3-(2-{4-[4-(dimethylamino)-2,3-dihydroxy-5-methoxypentanamido]butan-2-yl}-1,3-oxazol-4-yl)prop-2-en-1-yl]-9-hydroxy-4,4,8-trimethyl-1,6-dioxaspiro[4.5]decan-3-yl]oxy}phosphonic acid

C52H85N4O12P (988.5901299999999)


   

PI(22:2(13Z,16Z)/PGF2alpha)

[(1R,6R,12E,15S,16S,18R,19S,20R,21R,22R,23S,24R)-3,16,18,20,21,22,23,24-octahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8-dioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracos-12-en-6-yl]methyl (13Z,16Z)-docosa-13,16-dienoate

C51H89O16P (988.5887924)


PI(22:2(13Z,16Z)/PGF2alpha) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:2(13Z,16Z)/PGF2alpha), in particular, consists of one chain of 13Z,16Z-docosadienoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGF2alpha/22:2(13Z,16Z))

(1R,6R,13E,16S,17S,19R,20S,21R,22R,23R,24S,25R)-3,17,19,21,22,23,24,25-octahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9-dioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacos-13-en-6-yl (13Z,16Z)-docosa-13,16-dienoate

C51H89O16P (988.5887924)


PI(PGF2alpha/22:2(13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGF2alpha/22:2(13Z,16Z)), in particular, consists of one chain of Prostaglandin F2alpha at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:2(13Z,16Z)/PGE1)

[(1R,6R,15R,18R,19S,20R,21R,22R,23S,24R)-3,18,20,21,22,23,24-heptahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8,16-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosan-6-yl]methyl (13Z,16Z)-docosa-13,16-dienoate

C51H89O16P (988.5887924)


PI(22:2(13Z,16Z)/PGE1) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:2(13Z,16Z)/PGE1), in particular, consists of one chain of 13Z,16Z-docosadienoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGE1/22:2(13Z,16Z))

(1R,6R,16R,19R,20S,21R,22R,23R,24S,25R)-3,19,21,22,23,24,25-heptahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9,17-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosan-6-yl (13Z,16Z)-docosa-13,16-dienoate

C51H89O16P (988.5887924)


PI(PGE1/22:2(13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGE1/22:2(13Z,16Z)), in particular, consists of one chain of Prostaglandin E1 at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:2(13Z,16Z)/PGD1)

[(1R,6R,15S,16S,19R,20R,21R,22R,23S,24R)-3,16,20,21,22,23,24-heptahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8,18-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosan-6-yl]methyl (13Z,16Z)-docosa-13,16-dienoate

C51H89O16P (988.5887924)


PI(22:2(13Z,16Z)/PGD1) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:2(13Z,16Z)/PGD1), in particular, consists of one chain of 13Z,16Z-docosadienoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGD1/22:2(13Z,16Z))

(1R,6R,16S,17S,20R,21R,22R,23R,24S,25R)-3,17,21,22,23,24,25-heptahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9,19-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosan-6-yl (13Z,16Z)-docosa-13,16-dienoate

C51H89O16P (988.5887924)


PI(PGD1/22:2(13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGD1/22:2(13Z,16Z)), in particular, consists of one chain of Prostaglandin D1 at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/LTE4)

(2-{[(2R)-2-{[(2R)-2-amino-3-{[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulfanyl}propanoyl]oxy}-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C53H85N2O11PS (988.561139)


PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/LTE4) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/LTE4), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(LTE4/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2-{[(2R)-3-{[(2R)-2-amino-3-{[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulfanyl}propanoyl]oxy}-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C53H85N2O11PS (988.561139)


PC(LTE4/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(LTE4/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

(3beta,6alpha,12beta)-20-[(6-O-acetyl-beta-D-glucopyranosyl)oxy]-3,12-dihydroxydammar-24-en-6-yl 2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside|(3beta,6alpha,12beta,20S)-20-[(6-O-acetyl-beta-D-glucopyranosyl)oxy]-6-[(alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranosyl)oxy]dammar-24-ene-3,12-diol|6-acetyl-ginsenoside Re|6-O-acetylginsenoside Re|6-acetylginsenoside Rg1

(3beta,6alpha,12beta)-20-[(6-O-acetyl-beta-D-glucopyranosyl)oxy]-3,12-dihydroxydammar-24-en-6-yl 2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside|(3beta,6alpha,12beta,20S)-20-[(6-O-acetyl-beta-D-glucopyranosyl)oxy]-6-[(alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranosyl)oxy]dammar-24-ene-3,12-diol|6-acetyl-ginsenoside Re|6-O-acetylginsenoside Re|6-acetylginsenoside Rg1

C50H84O19 (988.5606514000001)


   
   
   
   

Quinquenoside III

(3,4-dihydroxy-6-{[16-hydroxy-2,6,6,10,11-pentamethyl-14-(6-methyl-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl)tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-5-yl]oxy}-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)methyl acetate

C50H84O19 (988.5606514000001)


   
   

2-benzofuran-1,3-dione,2-ethyl-2-(hydroxymethyl)propane-1,3-diol,hexanedioic acid,(9Z,12Z)-octadeca-9,12-dienoic acid

2-benzofuran-1,3-dione,2-ethyl-2-(hydroxymethyl)propane-1,3-diol,hexanedioic acid,(9Z,12Z)-octadeca-9,12-dienoic acid

C56H92O14 (988.6486732)


   

[2-[(8E,10E,12E,14E)-15-cyano-4,5,6,7,9,10,14-heptamethylpentadeca-8,10,12,14-tetraen-2-yl]-9-[(E)-3-[2-[4-[[4-(dimethylamino)-2,3-dihydroxy-5-methoxypentanoyl]amino]butan-2-yl]-1,3-oxazol-4-yl]prop-2-enyl]-7-hydroxy-4,4,8-trimethyl-1,10-dioxaspiro[4.5]decan-3-yl] dihydrogen phosphate

[2-[(8E,10E,12E,14E)-15-cyano-4,5,6,7,9,10,14-heptamethylpentadeca-8,10,12,14-tetraen-2-yl]-9-[(E)-3-[2-[4-[[4-(dimethylamino)-2,3-dihydroxy-5-methoxypentanoyl]amino]butan-2-yl]-1,3-oxazol-4-yl]prop-2-enyl]-7-hydroxy-4,4,8-trimethyl-1,10-dioxaspiro[4.5]decan-3-yl] dihydrogen phosphate

C52H85N4O12P (988.5901299999999)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D002273 - Carcinogens D004791 - Enzyme Inhibitors

   

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/LTE4)

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/LTE4)

C53H85N2O11PS (988.561139)


   

PC(LTE4/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PC(LTE4/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C53H85N2O11PS (988.561139)


   

PI(22:2(13Z,16Z)/PGF2alpha)

PI(22:2(13Z,16Z)/PGF2alpha)

C51H89O16P (988.5887924)


   

PI(PGF2alpha/22:2(13Z,16Z))

PI(PGF2alpha/22:2(13Z,16Z))

C51H89O16P (988.5887924)


   

PI(22:2(13Z,16Z)/PGE1)

PI(22:2(13Z,16Z)/PGE1)

C51H89O16P (988.5887924)


   

PI(PGE1/22:2(13Z,16Z))

PI(PGE1/22:2(13Z,16Z))

C51H89O16P (988.5887924)


   

PI(22:2(13Z,16Z)/PGD1)

PI(22:2(13Z,16Z)/PGD1)

C51H89O16P (988.5887924)


   

PI(PGD1/22:2(13Z,16Z))

PI(PGD1/22:2(13Z,16Z))

C51H89O16P (988.5887924)


   
   
   
   
   
   
   
   
   
   
   
   
   

[3-[[3-[(3-Hexadecanoyloxy-2-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] tetracosanoate

[3-[[3-[(3-Hexadecanoyloxy-2-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] tetracosanoate

C49H98O15P2 (988.6380618000001)


   

[2-Hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-octadecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] docosanoate

[2-Hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-octadecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] docosanoate

C49H98O15P2 (988.6380618000001)


   

[2-Hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-icosanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] icosanoate

[2-Hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-icosanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] icosanoate

C49H98O15P2 (988.6380618000001)


   

[1-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C56H93O12P (988.6404308)


   

[1-[(11Z,14Z)-henicosa-11,14-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[(11Z,14Z)-henicosa-11,14-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C56H93O12P (988.6404308)


   

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C55H88O15 (988.6122898)


   

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C55H88O15 (988.6122898)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C55H88O15 (988.6122898)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C55H88O15 (988.6122898)


   

[1-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C55H88O15 (988.6122898)


   

[1-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H88O15 (988.6122898)


   

[1-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C55H88O15 (988.6122898)


   

Adgga 16:3_16:4_18:4

Adgga 16:3_16:4_18:4

C59H88O12 (988.6275448)


   

Adgga 18:5_16:3_16:3

Adgga 18:5_16:3_16:3

C59H88O12 (988.6275448)


   

Adgga 14:1_18:5_18:5

Adgga 14:1_18:5_18:5

C59H88O12 (988.6275448)


   

Adgga 16:3_16:3_18:5

Adgga 16:3_16:3_18:5

C59H88O12 (988.6275448)


   

Adgga 18:4_16:3_16:4

Adgga 18:4_16:3_16:4

C59H88O12 (988.6275448)


   

Adgga 16:4_16:4_18:3

Adgga 16:4_16:4_18:3

C59H88O12 (988.6275448)


   

Adgga 16:4_16:3_18:4

Adgga 16:4_16:3_18:4

C59H88O12 (988.6275448)


   

Adgga 18:3_16:4_16:4

Adgga 18:3_16:4_16:4

C59H88O12 (988.6275448)


   

Adgga 18:5_16:2_16:4

Adgga 18:5_16:2_16:4

C59H88O12 (988.6275448)


   

Adgga 18:5_14:1_18:5

Adgga 18:5_14:1_18:5

C59H88O12 (988.6275448)


   

Adgga 16:4_16:2_18:5

Adgga 16:4_16:2_18:5

C59H88O12 (988.6275448)


   

Adgga 16:2_16:4_18:5

Adgga 16:2_16:4_18:5

C59H88O12 (988.6275448)


   

[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C55H89O13P (988.6040474)


   

[1-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C58H85O11P (988.582919)


   

[3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C58H85O11P (988.582919)


   

[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C55H89O13P (988.6040474)


   

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C55H88O15 (988.6122898)


   

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C55H88O15 (988.6122898)


   

[(2S)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C55H88O15 (988.6122898)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoate

C55H88O15 (988.6122898)


   

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C55H88O15 (988.6122898)


   

[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C55H88O15 (988.6122898)


   

[(2R)-1-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C55H89O13P (988.6040474)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (15E,18E,21E)-tetracosa-15,18,21-trienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (15E,18E,21E)-tetracosa-15,18,21-trienoate

C55H88O15 (988.6122898)


   

[(2S)-1-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-1-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C55H88O15 (988.6122898)


   

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C55H88O15 (988.6122898)


   

[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C55H88O15 (988.6122898)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C55H88O15 (988.6122898)


   

[(2S)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2S)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C55H88O15 (988.6122898)


   

[(2R)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C55H88O15 (988.6122898)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C55H88O15 (988.6122898)


   
   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C55H88O15 (988.6122898)


   

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C55H88O15 (988.6122898)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoate

C55H88O15 (988.6122898)


   

[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C55H89O13P (988.6040474)


   

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C55H88O15 (988.6122898)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C55H88O15 (988.6122898)


   

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C55H88O15 (988.6122898)


   

[(2R)-1-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C55H88O15 (988.6122898)


   

[(2S)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2S)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C55H88O15 (988.6122898)


   
   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoate

C55H88O15 (988.6122898)


   

[(2S)-1-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-1-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C55H88O15 (988.6122898)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C55H88O15 (988.6122898)


   

[(2S)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2S)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C55H88O15 (988.6122898)


   

[(2R)-1-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C55H89O13P (988.6040474)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C55H88O15 (988.6122898)


   

[(2S)-1-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-1-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C55H88O15 (988.6122898)


   

[(2R)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C55H88O15 (988.6122898)


   

[(2S)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2S)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C55H88O15 (988.6122898)


   

[(2S)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C55H88O15 (988.6122898)


   

[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C55H89O13P (988.6040474)


   

[(2S)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C55H88O15 (988.6122898)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

n-[1-({1-[2-({1-[(1-{[3-(4-methoxyphenyl)-1-oxo-1-[2-(1,3-thiazol-2-yl)pyrrolidin-1-yl]propan-2-yl](methyl)carbamoyl}-2-methylpropyl)(methyl)carbamoyl]-2-methylpropyl}(methyl)carbamoyl)pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl}(methyl)carbamoyl)ethyl]-n-methyloct-7-ynamide

n-[1-({1-[2-({1-[(1-{[3-(4-methoxyphenyl)-1-oxo-1-[2-(1,3-thiazol-2-yl)pyrrolidin-1-yl]propan-2-yl](methyl)carbamoyl}-2-methylpropyl)(methyl)carbamoyl]-2-methylpropyl}(methyl)carbamoyl)pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl}(methyl)carbamoyl)ethyl]-n-methyloct-7-ynamide

C53H80N8O8S (988.5819520000001)


   

[(2r,3s,4s,5r,6s)-6-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-1-[(2s)-6-methyl-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6s)-6-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-1-[(2s)-6-methyl-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C50H84O19 (988.5606514000001)