Exact Mass: 973.2955
Exact Mass Matches: 973.2955
Found 42 metabolites which its exact mass value is equals to given mass value 973.2955
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
5-cis-8-cis-Tetradecadienoyl-CoA
5-cis-8-cis-Tetradecadienoyl-CoA is an acyl-Coenzyme A that accumulates during the peroxisomal β-oxidation of arachidonic acid and 6,9,12-octadecatrienoic acid via the arachidonate pathway requiring both NADPH-dependent 2,4-dienoyl-CoA reductase and delta 3,5, delta 2,4-dienoyl-CoA isomerase.(PMID 9448727) [HMDB] 5-cis-8-cis-Tetradecadienoyl-CoA is an acyl-Coenzyme A that accumulates during the peroxisomal β-oxidation of arachidonic acid and 6,9,12-octadecatrienoic acid via the arachidonate pathway requiring both NADPH-dependent 2,4-dienoyl-CoA reductase and delta 3,5, delta 2,4-dienoyl-CoA isomerase.(PMID 9448727).
Navitoclax
(10Z,12E)-Tetradecadienoyl-CoA
(10z,12e)-tetradecadienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (10Z_12E)-tetradeca-10_12-dienoic acid thioester of coenzyme A. (10z,12e)-tetradecadienoyl-coa is an acyl-CoA with 1 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (10z,12e)-tetradecadienoyl-coa is therefore classified as a short chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (10z,12e)-tetradecadienoyl-coa, being a short chain acyl-CoA is a substrate for short chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (10Z,12E)-Tetradecadienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (10Z,12E)-Tetradecadienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (10Z,12E)-Tetradecadienoyl-CoA into (10Z_12E)-Tetradecadienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (10Z_12E)-Tetradecadienoylcarnitine is converted back to (10Z,12E)-Tetradecadienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (10Z,12E)-Tetradecadienoyl-CoA occurs in four steps. First, since (10Z,12E)-Tetradecadienoyl-CoA is a short chain acyl-CoA it is the substrate for a short chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (10Z,12E)-Tetradecadienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of wat...
(6Z,9Z)-Tetradecadienoyl-CoA
(6z,9z)-tetradecadienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (6Z_9Z)-tetradeca-6_9-dienoic acid thioester of coenzyme A. (6z,9z)-tetradecadienoyl-coa is an acyl-CoA with 1 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (6z,9z)-tetradecadienoyl-coa is therefore classified as a short chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (6z,9z)-tetradecadienoyl-coa, being a short chain acyl-CoA is a substrate for short chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (6Z,9Z)-Tetradecadienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (6Z,9Z)-Tetradecadienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (6Z,9Z)-Tetradecadienoyl-CoA into (6Z_9Z)-Tetradecadienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (6Z_9Z)-Tetradecadienoylcarnitine is converted back to (6Z,9Z)-Tetradecadienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (6Z,9Z)-Tetradecadienoyl-CoA occurs in four steps. First, since (6Z,9Z)-Tetradecadienoyl-CoA is a short chain acyl-CoA it is the substrate for a short chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (6Z,9Z)-Tetradecadienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed dou...
(2E,4E)-Tetradecadienoyl-CoA
(2e,4e)-tetradecadienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (2E_4E)-tetradeca-2_4-dienoic acid thioester of coenzyme A. (2e,4e)-tetradecadienoyl-coa is an acyl-CoA with 1 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (2e,4e)-tetradecadienoyl-coa is therefore classified as a short chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (2e,4e)-tetradecadienoyl-coa, being a short chain acyl-CoA is a substrate for short chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (2E,4E)-Tetradecadienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (2E,4E)-Tetradecadienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (2E,4E)-Tetradecadienoyl-CoA into (2E_4E)-Tetradecadienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (2E_4E)-Tetradecadienoylcarnitine is converted back to (2E,4E)-Tetradecadienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (2E,4E)-Tetradecadienoyl-CoA occurs in four steps. First, since (2E,4E)-Tetradecadienoyl-CoA is a short chain acyl-CoA it is the substrate for a short chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (2E,4E)-Tetradecadienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed dou...
3-(3-methyl-5-pentylfuran-2-yl)propanoyl-CoA
3-(3-methyl-5-pentylfuran-2-yl)propanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-(3-methyl-5-pentylfuran-2-yl)propanoic acid thioester of coenzyme A. 3-(3-methyl-5-pentylfuran-2-yl)propanoyl-coa is an acyl-CoA with 12 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-(3-methyl-5-pentylfuran-2-yl)propanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-(3-methyl-5-pentylfuran-2-yl)propanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-(3-methyl-5-pentylfuran-2-yl)propanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-(3-methyl-5-pentylfuran-2-yl)propanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-(3-methyl-5-pentylfuran-2-yl)propanoyl-CoA into 3-(3-methyl-5-pentylfuran-2-yl)propanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-(3-methyl-5-pentylfuran-2-yl)propanoylcarnitine is converted back to 3-(3-methyl-5-pentylfuran-2-yl)propanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-(3-methyl-5-pentylfuran-2-yl)propanoyl-CoA occurs in four steps. First, since 3-(3-methyl-5-pentylfuran-2-yl)propanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-(3-methyl-5-pentylf...
Malvidin 3-O-(6-O-(4-O-malonyl-alpha-rhamnopyranosyl)-beta-glucopyranoside)-5-O-(6-O-malonyl-beta-glucopyranoside)
Malvidin 3-O- (6-O- (4-O-malonyl-alpha-rhamnopyranosyl) -beta-glucopyranoside) -5-O- (6-O-malonyl-beta-glucopyranoside)
CoA 14:2
ABT-263
C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent > C192025 - Bcl-2 Family Protein Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C159200 - BCL-2 Inhibitor D000970 - Antineoplastic Agents
(2E,5Z)-tetradecadienoyl-CoA
An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (2E,5Z)-tetradecadienoic acid.
myristoyl-CoA(4-)
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (2S)-2-[(1R,3aR,7aR)-7a-methyl-4-oxo-2,3,3a,5,6,7-hexahydro-1H-inden-1-yl]propanethioate
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (5Z,7E)-tetradeca-5,7-dienethioate
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (9Z,12E)-tetradeca-9,12-dienethioate
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (9Z,11E)-tetradeca-9,11-dienethioate
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (10E,12E)-tetradeca-10,12-dienethioate
(2S)-2-[[(4S)-4-[[(4S)-4-[[(4S)-4-[[(4S)-4-[[4-[(6aR)-3-amino-1-oxo-2,5,6,6a,7,9-hexahydroimidazo[1,5-f]pteridin-8-yl]benzoyl]amino]-4-carboxybutanoyl]amino]-4-carboxybutanoyl]amino]-4-carboxybutanoyl]amino]-4-carboxybutanoyl]amino]pentanedioic acid
S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (2E,4E)-tetradeca-2,4-dienethioate
(2E,5E)-tetradecadienoyl-CoA
An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (2E,5E)-tetradecadienoic acid.
(9Z,12Z)-tetradecadienoyl-CoA
An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (9Z,12Z)-tetradecadienoic acid.
S-[2-[3-[[4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxy-tetrahydrofuran-2-yl]methoxy-hydroxy-phosphoryl]oxy-hydroxy-phosphoryl]oxy-2-hydroxy-3,3-dimethyl-butanoyl]amino]propanoylamino]ethyl] tetradec-3-ynethioate
myristoyl-CoA(4-)
An acyl-CoA oxoanion that is the tetraanion of myristoyl-CoA, arising from deprotonation of phosphate and diphosphate functions.
(3E,5Z)-tetradecadienoyl-CoA
An unsaturated fatty acyl-CoA resulting from the formal condensation of the thiol group of coenzyme A with the carboxy group of (3E,5Z)-tetradecadienoic acid.
cis,cis-tetradeca-5,8-dienoyl-CoA
An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of cis,cis-tetradeca-5,8-dienoic acid
(2E,4E)-Tetradecadienoyl-CoA
An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (2E,4E)-tetradecadienoic acid.
isomyristoyl-CoA(4-)
A long-chain fatty acyl-CoA(4-) oxanion arising from deprotonation of the phosphate and diphosphate OH groups of 12-methyltridecanoyl-CoA; major species at pH 7.3