Exact Mass: 971.2666

Exact Mass Matches: 971.2666

Found 50 metabolites which its exact mass value is equals to given mass value 971.2666, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

(3E,5Z,8Z)-Tetradecatrienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(tetradeca-3,5,8-trienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C35H56N7O17P3S (971.2666)


(3E,5Z,8Z)-tetradecatrienoyl-CoA is an acyl-CoA with (3E,5Z,8Z)-tetradecatrienoate moiety. Acyl-CoA (or formyl-CoA) is a coenzyme involved in the metabolism of fatty acids. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid inside living cells. The compound undergoes beta oxidation, forming one or more molecules of acetyl-CoA. This, in turn, enters the citric acid cycle, eventually forming several molecules of ATP.

   

Tetradeca-7,9,11-trienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(tetradeca-7,9,11-trienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C35H56N7O17P3S (971.2666)


Tetradeca-7,9,11-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-7_9_11-trienoic acid thioester of coenzyme A. Tetradeca-7,9,11-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-7,9,11-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-7,9,11-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-7,9,11-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-7,9,11-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-7,9,11-trienoyl-CoA into Tetradeca-7_9_11-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-7_9_11-trienoylcarnitine is converted back to Tetradeca-7,9,11-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-7,9,11-trienoyl-CoA occurs in four steps. First, since Tetradeca-7,9,11-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-7,9,11-trienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly forme...

   

Tetradeca-3,5,7-trienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(tetradeca-3,5,7-trienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C35H56N7O17P3S (971.2666)


Tetradeca-3,5,7-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-3_5_7-trienoic acid thioester of coenzyme A. Tetradeca-3,5,7-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-3,5,7-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-3,5,7-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-3,5,7-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-3,5,7-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-3,5,7-trienoyl-CoA into Tetradeca-3_5_7-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-3_5_7-trienoylcarnitine is converted back to Tetradeca-3,5,7-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-3,5,7-trienoyl-CoA occurs in four steps. First, since Tetradeca-3,5,7-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-3,5,7-trienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond ...

   

Tetradeca-8,10,12-trienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(tetradeca-8,10,12-trienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C35H56N7O17P3S (971.2666)


Tetradeca-8,10,12-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-8_10_12-trienoic acid thioester of coenzyme A. Tetradeca-8,10,12-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-8,10,12-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-8,10,12-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-8,10,12-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-8,10,12-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-8,10,12-trienoyl-CoA into Tetradeca-8_10_12-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-8_10_12-trienoylcarnitine is converted back to Tetradeca-8,10,12-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-8,10,12-trienoyl-CoA occurs in four steps. First, since Tetradeca-8,10,12-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-8,10,12-trienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across t...

   

Tetradeca-4,7,10-trienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(tetradeca-4,7,10-trienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C35H56N7O17P3S (971.2666)


Tetradeca-4,7,10-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-4_7_10-trienoic acid thioester of coenzyme A. Tetradeca-4,7,10-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-4,7,10-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-4,7,10-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-4,7,10-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-4,7,10-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-4,7,10-trienoyl-CoA into Tetradeca-4_7_10-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-4_7_10-trienoylcarnitine is converted back to Tetradeca-4,7,10-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-4,7,10-trienoyl-CoA occurs in four steps. First, since Tetradeca-4,7,10-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-4,7,10-trienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly forme...

   

Tetradeca-4,6,8-trienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(tetradeca-4,6,8-trienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C35H56N7O17P3S (971.2666)


Tetradeca-4,6,8-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-4_6_8-trienoic acid thioester of coenzyme A. Tetradeca-4,6,8-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-4,6,8-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-4,6,8-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-4,6,8-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-4,6,8-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-4,6,8-trienoyl-CoA into Tetradeca-4_6_8-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-4_6_8-trienoylcarnitine is converted back to Tetradeca-4,6,8-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-4,6,8-trienoyl-CoA occurs in four steps. First, since Tetradeca-4,6,8-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-4,6,8-trienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond ...

   

Tetradeca-6,9,12-trienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(tetradeca-6,9,12-trienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C35H56N7O17P3S (971.2666)


Tetradeca-6,9,12-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-6_9_12-trienoic acid thioester of coenzyme A. Tetradeca-6,9,12-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-6,9,12-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-6,9,12-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-6,9,12-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-6,9,12-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-6,9,12-trienoyl-CoA into Tetradeca-6_9_12-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-6_9_12-trienoylcarnitine is converted back to Tetradeca-6,9,12-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-6,9,12-trienoyl-CoA occurs in four steps. First, since Tetradeca-6,9,12-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-6,9,12-trienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly forme...

   

Tetradeca-5,7,9-trienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(tetradeca-5,7,9-trienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C35H56N7O17P3S (971.2666)


Tetradeca-5,7,9-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-5_7_9-trienoic acid thioester of coenzyme A. Tetradeca-5,7,9-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-5,7,9-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-5,7,9-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-5,7,9-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-5,7,9-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-5,7,9-trienoyl-CoA into Tetradeca-5_7_9-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-5_7_9-trienoylcarnitine is converted back to Tetradeca-5,7,9-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-5,7,9-trienoyl-CoA occurs in four steps. First, since Tetradeca-5,7,9-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-5,7,9-trienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond ...

   

Tetradeca-5,8,11-trienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(tetradeca-5,8,11-trienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C35H56N7O17P3S (971.2666)


Tetradeca-5,8,11-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-5_8_11-trienoic acid thioester of coenzyme A. Tetradeca-5,8,11-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-5,8,11-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-5,8,11-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-5,8,11-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-5,8,11-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-5,8,11-trienoyl-CoA into Tetradeca-5_8_11-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-5_8_11-trienoylcarnitine is converted back to Tetradeca-5,8,11-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-5,8,11-trienoyl-CoA occurs in four steps. First, since Tetradeca-5,8,11-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-5,8,11-trienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly forme...

   

Tetradeca-2,5,8-trienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(tetradeca-2,5,8-trienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C35H56N7O17P3S (971.2666)


Tetradeca-2,5,8-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-2_5_8-trienoic acid thioester of coenzyme A. Tetradeca-2,5,8-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-2,5,8-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-2,5,8-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-2,5,8-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-2,5,8-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-2,5,8-trienoyl-CoA into Tetradeca-2_5_8-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-2_5_8-trienoylcarnitine is converted back to Tetradeca-2,5,8-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-2,5,8-trienoyl-CoA occurs in four steps. First, since Tetradeca-2,5,8-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-2,5,8-trienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond ...

   

Tetradeca-6,8,10-trienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(tetradeca-6,8,10-trienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C35H56N7O17P3S (971.2666)


Tetradeca-6,8,10-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-6_8_10-trienoic acid thioester of coenzyme A. Tetradeca-6,8,10-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-6,8,10-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-6,8,10-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-6,8,10-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-6,8,10-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-6,8,10-trienoyl-CoA into Tetradeca-6_8_10-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-6_8_10-trienoylcarnitine is converted back to Tetradeca-6,8,10-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-6,8,10-trienoyl-CoA occurs in four steps. First, since Tetradeca-6,8,10-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-6,8,10-trienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly forme...

   

(4Z,10Z,12E)-Tetradeca-4,10,12-trienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(tetradeca-4,10,12-trienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C35H56N7O17P3S (971.2666)


(4z,10z,12e)-tetradeca-4,10,12-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (4Z_10Z_12E)-tetradeca-4_10_12-trienoic acid thioester of coenzyme A. (4z,10z,12e)-tetradeca-4,10,12-trienoyl-coa is an acyl-CoA with 1 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (4z,10z,12e)-tetradeca-4,10,12-trienoyl-coa is therefore classified as a short chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (4z,10z,12e)-tetradeca-4,10,12-trienoyl-coa, being a short chain acyl-CoA is a substrate for short chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (4Z,10Z,12E)-Tetradeca-4,10,12-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (4Z,10Z,12E)-Tetradeca-4,10,12-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (4Z,10Z,12E)-Tetradeca-4,10,12-trienoyl-CoA into (4Z_10Z_12E)-Tetradeca-4_10_12-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (4Z_10Z_12E)-Tetradeca-4_10_12-trienoylcarnitine is converted back to (4Z,10Z,12E)-Tetradeca-4,10,12-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (4Z,10Z,12E)-Tetradeca-4,10,12-trienoyl-CoA occurs in four steps. First, since (4Z,10Z,12E)-Tetradeca-4,10,12-trienoyl-CoA is a short chain acyl-CoA it is the substrate for a short chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (4Z,10Z,12E)-Tetradeca-4,10,12...

   

Tetradeca-3,6,9-trienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(tetradeca-3,6,9-trienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C35H56N7O17P3S (971.2666)


Tetradeca-3,6,9-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-3_6_9-trienoic acid thioester of coenzyme A. Tetradeca-3,6,9-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-3,6,9-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-3,6,9-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-3,6,9-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-3,6,9-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-3,6,9-trienoyl-CoA into Tetradeca-3_6_9-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-3_6_9-trienoylcarnitine is converted back to Tetradeca-3,6,9-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-3,6,9-trienoyl-CoA occurs in four steps. First, since Tetradeca-3,6,9-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-3,6,9-trienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond ...

   

Tetradeca-2,4,6-trienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(tetradeca-2,4,6-trienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C35H56N7O17P3S (971.2666)


Tetradeca-2,4,6-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-2_4_6-trienoic acid thioester of coenzyme A. Tetradeca-2,4,6-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-2,4,6-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-2,4,6-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-2,4,6-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-2,4,6-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-2,4,6-trienoyl-CoA into Tetradeca-2_4_6-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-2_4_6-trienoylcarnitine is converted back to Tetradeca-2,4,6-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-2,4,6-trienoyl-CoA occurs in four steps. First, since Tetradeca-2,4,6-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-2,4,6-trienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond ...

   

CoA 14:3

5Z,8Z,11Z-tetradecatrienoyl-CoA

C35H56N7O17P3S (971.2666)


   
   
   
   
   

cis-tetradec-3-enoyl-CoA(4-)

cis-tetradec-3-enoyl-CoA(4-)

C35H56N7O17P3S-4 (971.2666)


   
   
   

6-trans-3-oxo-tridecenoyl-CoA

6-trans-3-oxo-tridecenoyl-CoA

C34H52N7O18P3S-4 (971.2302)


   

6-cis, 3-oxo-tridecenoyl-CoA

6-cis, 3-oxo-tridecenoyl-CoA

C34H52N7O18P3S-4 (971.2302)


   
   

a tetradecenoyl-CoA (n-C14:1CoA)

a tetradecenoyl-CoA (n-C14:1CoA)

C35H56N7O17P3S-4 (971.2666)


   

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (2E,5Z,7E)-tetradeca-2,5,7-trienethioate

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (2E,5Z,7E)-tetradeca-2,5,7-trienethioate

C35H56N7O17P3S (971.2666)


   

(3E,5Z,8Z)-Tetradecatrienoyl-CoA

(3E,5Z,8Z)-Tetradecatrienoyl-CoA

C35H56N7O17P3S (971.2666)


   

Tetradeca-3,5,7-trienoyl-CoA

Tetradeca-3,5,7-trienoyl-CoA

C35H56N7O17P3S (971.2666)


   

Tetradeca-4,6,8-trienoyl-CoA

Tetradeca-4,6,8-trienoyl-CoA

C35H56N7O17P3S (971.2666)


   

Tetradeca-5,7,9-trienoyl-CoA

Tetradeca-5,7,9-trienoyl-CoA

C35H56N7O17P3S (971.2666)


   

Tetradeca-2,5,8-trienoyl-CoA

Tetradeca-2,5,8-trienoyl-CoA

C35H56N7O17P3S (971.2666)


   

Tetradeca-3,6,9-trienoyl-CoA

Tetradeca-3,6,9-trienoyl-CoA

C35H56N7O17P3S (971.2666)


   

Tetradeca-2,4,6-trienoyl-CoA

Tetradeca-2,4,6-trienoyl-CoA

C35H56N7O17P3S (971.2666)


   

Tetradeca-7,9,11-trienoyl-CoA

Tetradeca-7,9,11-trienoyl-CoA

C35H56N7O17P3S (971.2666)


   

Tetradeca-4,7,10-trienoyl-CoA

Tetradeca-4,7,10-trienoyl-CoA

C35H56N7O17P3S (971.2666)


   

Tetradeca-6,9,12-trienoyl-CoA

Tetradeca-6,9,12-trienoyl-CoA

C35H56N7O17P3S (971.2666)


   

Tetradeca-5,8,11-trienoyl-CoA

Tetradeca-5,8,11-trienoyl-CoA

C35H56N7O17P3S (971.2666)


   

Tetradeca-6,8,10-trienoyl-CoA

Tetradeca-6,8,10-trienoyl-CoA

C35H56N7O17P3S (971.2666)


   

Tetradeca-8,10,12-trienoyl-CoA

Tetradeca-8,10,12-trienoyl-CoA

C35H56N7O17P3S (971.2666)


   

(4Z,10Z,12E)-Tetradeca-4,10,12-trienoyl-CoA

(4Z,10Z,12E)-Tetradeca-4,10,12-trienoyl-CoA

C35H56N7O17P3S (971.2666)


   
   

(3E)-tetradecenoyl-CoA(4-)

(3E)-tetradecenoyl-CoA(4-)

C35H56N7O17P3S (971.2666)


A monounsaturated fatty acyl-CoA(4-) obtained by deprotonation of phosphate and diphosphate OH groups of (3E)-tetradecenoyl-CoA; major species at pH 7.3.

   

cis-tetradec-3-enoyl-CoA(4-)

cis-tetradec-3-enoyl-CoA(4-)

C35H56N7O17P3S (971.2666)


An acyl-CoA(4-) arising from deprotonation of the phosphate and diphosphate OH groups of cis-tetradec-3-enoyl-CoA; major species at pH 7.3.

   

(5E)-tetradecenoyl-CoA(4-)

(5E)-tetradecenoyl-CoA(4-)

C35H56N7O17P3S (971.2666)


An acyl-CoA(4-) obtained by deprotonation of the phosphate and diphosphate OH groups of (5E)-tetradecenoyl-CoA; major species at pH 7.3.

   

trans-tetradec-2-enoyl-CoA(4-)

trans-tetradec-2-enoyl-CoA(4-)

C35H56N7O17P3S (971.2666)


An acyl-CoA oxoanion arising from deprotonation of the phosphate and diphosphate OH groups of trans-tetradec-2-enoyl-CoA; major species at pH 7.3.

   

(9Z)-myristoleoyl-CoA(4-)

(9Z)-myristoleoyl-CoA(4-)

C35H56N7O17P3S (971.2666)


An acyl-CoA(4-) obtained by deprotonation of the phosphate and diphosphate OH groups of myristoleoyl-CoA; major species at pH 7.3.

   

(5Z)-tetradecenoyl-CoA(4-)

(5Z)-tetradecenoyl-CoA(4-)

C35H56N7O17P3S (971.2666)


An acyl-CoA(4-) obtained by deprotonation of the phosphate and diphosphate OH groups of (5Z)-tetradecenoyl-CoA; major species at pH 7.3.

   

trans-tetradec-11-enoyl-CoA(4-)

trans-tetradec-11-enoyl-CoA(4-)

C35H56N7O17P3S (971.2666)


Tetraanion of trans-tetradec-11-enoyl-CoA arising from deprotonation of phosphate and diphosphate functions.

   

cis-tetradec-11-enoyl-CoA(4-)

cis-tetradec-11-enoyl-CoA(4-)

C35H56N7O17P3S (971.2666)


Tetraanion of cis-tetradec-11-enoyl-CoA arising from deprotonation of phosphate and diphosphate functions.