Exact Mass: 966.487

Exact Mass Matches: 966.487

Found 155 metabolites which its exact mass value is equals to given mass value 966.487, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

[beta-GlcNAc-(1->4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)]n

[beta-GlcNAc-(1->4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)]n

C39H66N8O20 (966.4393)


   

PIP(16:0/22:4(10Z,13Z,16Z,19Z))

{[(1R,3S)-3-({[(2R)-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyloxy]-3-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(16:0/22:4(10Z,13Z,16Z,19Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(16:0/22:4(10Z,13Z,16Z,19Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of (10Z,13Z,16Z,19Z-docosatetraenoyl) at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the (10Z,13Z,16Z,19Z-docosatetraenoyl) moiety is derived from fish oils. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(16:0/22:4(10Z,13Z,16Z,19Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(16:0/22:4(10Z,13Z,16Z,19Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of (10Z,13Z,16Z,19Z-docosatetraenoyl) at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the (10Z,13Z,16Z,19Z-docosatetraenoyl) moiety is derived from fish oils. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/22:4(7Z,10Z,13Z,16Z))

{[(1R,3S)-3-({[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(16:0/22:4(7Z,10Z,13Z,16Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(16:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the adrenic acid moiety is derived from animal fats. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:0/20:4(5Z,8Z,11Z,14Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-(octadecanoyloxy)propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(18:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the arachidonic acid moiety is derived from animal fats and eggs. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:0/20:4(8Z,11Z,14Z,17Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-3-(octadecanoyloxy)propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(18:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the eicsoatetraenoic acid moiety is derived from fish oils. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(18:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the eicsoatetraenoic acid moiety is derived from fish oils. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(11Z)/20:3(5Z,8Z,11Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(18:1(11Z)/20:3(5Z,8Z,11Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:1(11Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of mead acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the mead acid moiety is derived from fish oils, liver and kidney. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(18:1(11Z)/20:3(5Z,8Z,11Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:1(11Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of mead acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the mead acid moiety is derived from fish oils, liver and kidney. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(11Z)/20:3(8Z,11Z,14Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(18:1(11Z)/20:3(8Z,11Z,14Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:1(11Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(18:1(11Z)/20:3(8Z,11Z,14Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:1(11Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(9Z)/20:3(5Z,8Z,11Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(18:1(9Z)/20:3(5Z,8Z,11Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:1(9Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of mead acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the mead acid moiety is derived from fish oils, liver and kidney. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(9Z)/20:3(8Z,11Z,14Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(18:1(9Z)/20:3(8Z,11Z,14Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:1(9Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:2(9Z,12Z)/20:2(11Z,14Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(18:2(9Z,12Z)/20:2(11Z,14Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:2(9Z,12Z)/20:2(11Z,14Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the eicosadienoic acid moiety is derived from fish oils and liver. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(18:2(9Z,12Z)/20:2(11Z,14Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:2(9Z,12Z)/20:2(11Z,14Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the eicosadienoic acid moiety is derived from fish oils and liver. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:2(11Z,14Z)/18:2(9Z,12Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(20:2(11Z,14Z)/18:2(9Z,12Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:2(11Z,14Z)/18:2(9Z,12Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the linoleic acid moiety is derived from seed oils. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(20:2(11Z,14Z)/18:2(9Z,12Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:2(11Z,14Z)/18:2(9Z,12Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the linoleic acid moiety is derived from seed oils. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:3(5Z,8Z,11Z)/18:1(11Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(20:3(5Z,8Z,11Z)/18:1(11Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:3(5Z,8Z,11Z)/18:1(11Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the vaccenic acid moiety is derived from butter fat and animal fat. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(20:3(5Z,8Z,11Z)/18:1(11Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:3(5Z,8Z,11Z)/18:1(11Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the vaccenic acid moiety is derived from butter fat and animal fat. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:3(5Z,8Z,11Z)/18:1(9Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(20:3(5Z,8Z,11Z)/18:1(9Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:3(5Z,8Z,11Z)/18:1(9Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of oleic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(20:3(5Z,8Z,11Z)/18:1(9Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:3(5Z,8Z,11Z)/18:1(9Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of oleic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:3(8Z,11Z,14Z)/18:1(11Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(20:3(8Z,11Z,14Z)/18:1(11Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:3(8Z,11Z,14Z)/18:1(11Z)), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the vaccenic acid moiety is derived from butter fat and animal fat. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(20:3(8Z,11Z,14Z)/18:1(11Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:3(8Z,11Z,14Z)/18:1(11Z)), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the vaccenic acid moiety is derived from butter fat and animal fat. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:3(8Z,11Z,14Z)/18:1(9Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(20:3(8Z,11Z,14Z)/18:1(9Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:3(8Z,11Z,14Z)/18:1(9Z)), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of oleic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(20:3(8Z,11Z,14Z)/18:1(9Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:3(8Z,11Z,14Z)/18:1(9Z)), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of oleic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(5Z,8Z,11Z,14Z)/18:0)

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-(octadecanoyloxy)propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(20:4(5Z,8Z,11Z,14Z)/18:0) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:4(5Z,8Z,11Z,14Z)/18:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of stearic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(20:4(5Z,8Z,11Z,14Z)/18:0) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:4(5Z,8Z,11Z,14Z)/18:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of stearic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(8Z,11Z,14Z,17Z)/18:0)

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-2-(octadecanoyloxy)propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(20:4(8Z,11Z,14Z,17Z)/18:0) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:4(8Z,11Z,14Z,17Z)/18:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of stearic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(20:4(8Z,11Z,14Z,17Z)/18:0) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:4(8Z,11Z,14Z,17Z)/18:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of stearic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(22:4(10Z,13Z,16Z,19Z)/16:0)

{[(1R,3S)-3-({[(2R)-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyloxy]-2-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(22:4(10Z,13Z,16Z,19Z)/16:0) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(22:4(10Z,13Z,16Z,19Z)/16:0), in particular, consists of one chain of (10Z,13Z,16Z,19Z-docosatetraenoyl) at the C-1 position and one chain of palmitic acid at the C-2 position. The (10Z,13Z,16Z,19Z-docosatetraenoyl) moiety is derived from fish oils, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(22:4(7Z,10Z,13Z,16Z)/16:0)

{[(1R,3S)-3-({[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(22:4(7Z,10Z,13Z,16Z)/16:0) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(22:4(7Z,10Z,13Z,16Z)/16:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(22:4(7Z,10Z,13Z,16Z)/16:0) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(22:4(7Z,10Z,13Z,16Z)/16:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PGP(20:3(5Z,8Z,11Z)/6 keto-PGF1alpha)

[(2S)-3-({[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C46H80O17P2 (966.487)


PGP(20:3(5Z,8Z,11Z)/6 keto-PGF1alpha) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(5Z,8Z,11Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 5Z,8Z,11Z-eicosatrienoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(6 keto-PGF1alpha/20:3(5Z,8Z,11Z))

PGP(6 keto-PGF1alpha/20:3(5Z,8Z,11Z))

C46H80O17P2 (966.487)


PGP(6 keto-PGF1alpha/20:3(5Z,8Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(6 keto-PGF1alpha/20:3(5Z,8Z,11Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(5Z,8Z,11Z)/TXB2)

[(2S)-3-({[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C46H80O17P2 (966.487)


PGP(20:3(5Z,8Z,11Z)/TXB2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(5Z,8Z,11Z)/TXB2), in particular, consists of one chain of one 5Z,8Z,11Z-eicosatrienoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(TXB2/20:3(5Z,8Z,11Z))

[(2S)-3-({[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C46H80O17P2 (966.487)


PGP(TXB2/20:3(5Z,8Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(TXB2/20:3(5Z,8Z,11Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(8Z,11Z,14Z)/6 keto-PGF1alpha)

[(2S)-3-({[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C46H80O17P2 (966.487)


PGP(20:3(8Z,11Z,14Z)/6 keto-PGF1alpha) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 8Z,11Z,14Z-eicosatrienoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(6 keto-PGF1alpha/20:3(8Z,11Z,14Z))

[(2S)-3-({[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C46H80O17P2 (966.487)


PGP(6 keto-PGF1alpha/20:3(8Z,11Z,14Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(6 keto-PGF1alpha/20:3(8Z,11Z,14Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(8Z,11Z,14Z)/TXB2)

[(2S)-3-({[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C46H80O17P2 (966.487)


PGP(20:3(8Z,11Z,14Z)/TXB2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)/TXB2), in particular, consists of one chain of one 8Z,11Z,14Z-eicosatrienoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(TXB2/20:3(8Z,11Z,14Z))

[(2S)-3-({[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C46H80O17P2 (966.487)


PGP(TXB2/20:3(8Z,11Z,14Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(TXB2/20:3(8Z,11Z,14Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2S)-3-({[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:4(7Z,10Z,13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:4(7Z,10Z,13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:4(7Z,10Z,13Z,16Z))

[(2S)-3-({[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2S)-3-({[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:4(7Z,10Z,13Z,16Z))

[(2S)-3-({[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2S)-3-({[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:4(7Z,10Z,13Z,16Z))

[(2S)-3-({[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2S)-3-({[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:4(7Z,10Z,13Z,16Z))

[(2S)-3-({[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:4(7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2S)-3-({[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:4(7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:4(7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:4(7Z,10Z,13Z,16Z))

[(2S)-3-({[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(18-methylicosanoyl)oxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C47H84O16P2 (966.5234)


PGP(a-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 18-methyleicosanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-21:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(18-methylicosanoyl)oxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C47H84O16P2 (966.5234)


PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-21:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-21:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 18-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(19-methylicosanoyl)oxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C47H84O16P2 (966.5234)


PGP(i-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 19-methyleicosanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-21:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(19-methylicosanoyl)oxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C47H84O16P2 (966.5234)


PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-21:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-21:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 19-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PIP(16:1(9Z)/PGJ2)

{[(1S,6R,12Z,15S,19R,20R,21R,22R,23S,24R)-6-{[(9Z)-hexadec-9-enoyloxy]methyl}-3,20,22,23,24-pentahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8,18-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosa-12,16-dien-21-yl]oxy}phosphonic acid

C45H76O18P2 (966.4507)


PIP(16:1(9Z)/PGJ2) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:1(9Z)/PGJ2), in particular, consists of one chain of 9Z-hexadecenoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(PGJ2/16:1(9Z))

{[(1S,6R,13Z,16S,20R,21R,22R,23R,24S,25R)-6-[(9Z)-hexadec-9-enoyloxy]-3,21,23,24,25-pentahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9,19-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosa-13,17-dien-22-yl]oxy}phosphonic acid

C45H76O18P2 (966.4507)


PIP(PGJ2/16:1(9Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(PGJ2/16:1(9Z)), in particular, consists of one chain of Prostaglandin J2 at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:2(9Z,12Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

{[(1R,3S)-3-({[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H76O18P2 (966.4507)


PIP(16:2(9Z,12Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:2(9Z,12Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of 9Z,12Z-hexadecenoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:2(9Z,12Z))

{[(1R,3S)-3-({[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H76O18P2 (966.4507)


PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:2(9Z,12Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:2(9Z,12Z)), in particular, consists of one chain of Leukotriene B4 at the C-1 position and one chain of 9Z,12Z-hexadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:2(9Z,12Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

{[(1R,3S)-3-({[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H76O18P2 (966.4507)


PIP(16:2(9Z,12Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:2(9Z,12Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of 9Z,12Z-hexadecenoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:2(9Z,12Z))

{[(1R,3S)-3-({[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H76O18P2 (966.4507)


PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:2(9Z,12Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:2(9Z,12Z)), in particular, consists of one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,12Z-hexadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:2(9Z,12Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

{[(1R,3S)-3-({[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H76O18P2 (966.4507)


PIP(16:2(9Z,12Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:2(9Z,12Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of 9Z,12Z-hexadecenoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:2(9Z,12Z))

{[(1R,3S)-3-({[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H76O18P2 (966.4507)


PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:2(9Z,12Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:2(9Z,12Z)), in particular, consists of one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,12Z-hexadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PS(20:4(5Z,8Z,11Z,14Z)/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-({[(2S)-2-amino-2-carboxyethoxy](hydroxy)phosphoryl}oxy)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propan-2-yl]oxy}-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C49H79N2O13PS (966.504)


PS(20:4(5Z,8Z,11Z,14Z)/LTE4) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(5Z,8Z,11Z,14Z)/LTE4), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(LTE4/20:4(5Z,8Z,11Z,14Z))

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-3-({[(2S)-2-amino-2-carboxyethoxy](hydroxy)phosphoryl}oxy)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C49H79N2O13PS (966.504)


PS(LTE4/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(LTE4/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:4(8Z,11Z,14Z,17Z)/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-({[(2S)-2-amino-2-carboxyethoxy](hydroxy)phosphoryl}oxy)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propan-2-yl]oxy}-3-oxopropyl]sulfanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C49H79N2O13PS (966.504)


PS(20:4(8Z,11Z,14Z,17Z)/LTE4) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(8Z,11Z,14Z,17Z)/LTE4), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(LTE4/20:4(8Z,11Z,14Z,17Z))

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-3-({[(2S)-2-amino-2-carboxyethoxy](hydroxy)phosphoryl}oxy)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]-3-oxopropyl]sulfanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C49H79N2O13PS (966.504)


PS(LTE4/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(LTE4/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   
   

Sapinmusaponin N

Sapinmusaponin N

C50H78O18 (966.5188)


   

Sapinmusaponin M

Sapinmusaponin M

C50H78O18 (966.5188)


   

Eupteleasaponin VI acetate

Eupteleasaponin VI acetate

C49H74O19 (966.4824)


   

23-O-acetyl-hederagenin 3-O-(4-O-acetyl-beta-D-xylopyranosyl)-(1->3)-alpha-L-rhamnopyranosyl-(1->2)-alpha-L-arabinopyranoside

23-O-acetyl-hederagenin 3-O-(4-O-acetyl-beta-D-xylopyranosyl)-(1->3)-alpha-L-rhamnopyranosyl-(1->2)-alpha-L-arabinopyranoside

C50H78O18 (966.5188)


   

dumortierigenin 3-O-alpha-rhamnopyranosyl-(1->2)-beta-glucopyranosyl-(1->2)-6-O-methyl-beta-glucuronopyranoside|dumortierinoside A methyl ester

dumortierigenin 3-O-alpha-rhamnopyranosyl-(1->2)-beta-glucopyranosyl-(1->2)-6-O-methyl-beta-glucuronopyranoside|dumortierinoside A methyl ester

C50H78O18 (966.5188)


   

stauntogenin 3-O-alpha-L-diginopyranosoyl-(1?4)-beta-D-cymaropyranosoyl-(1?4)-beta-D-cymaropyranosoyl-(1?4)-beta-D-thevetopyranoside|stauntoside E

stauntogenin 3-O-alpha-L-diginopyranosoyl-(1?4)-beta-D-cymaropyranosoyl-(1?4)-beta-D-cymaropyranosoyl-(1?4)-beta-D-thevetopyranoside|stauntoside E

C49H74O19 (966.4824)


   

stauntogenin A 3-O-alpha-L-diginopyranosoyl-(1?4)-beta-D-cymaropyranosoyl-(1?4)-beta-D-cymaropyranosoyl-(1?4)-beta-D-thevetopyranoside|stauntoside G

stauntogenin A 3-O-alpha-L-diginopyranosoyl-(1?4)-beta-D-cymaropyranosoyl-(1?4)-beta-D-cymaropyranosoyl-(1?4)-beta-D-thevetopyranoside|stauntoside G

C49H74O19 (966.4824)


   
   

(24S,25S)-5alpha-spirostane-2alpha,3beta,5,6beta,24-pentol 2-O-beta-D-glucopyranosyl 24-O-2)-beta-D-glucopyranoside>

(24S,25S)-5alpha-spirostane-2alpha,3beta,5,6beta,24-pentol 2-O-beta-D-glucopyranosyl 24-O-2)-beta-D-glucopyranoside>

C45H74O22 (966.4672)


   

PIP(38:4)

1-(11Z,14Z-Eicosadienoyl)-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phospho-(1-myo-inositol-3-phosphate)

C47H84O16P2 (966.5234)


   

1-Eicsoate

1-(8Z,11Z,14Z,17Z-Eicosapentaenoyl)-2-octadecanoyl-sn-glycero-3-phospho-(1-myo-inositol-3-phosphate)

C47H84O16P2 (966.5234)


   

(2S,2S)-[[(2R, 5R)-1-[3,5-difluoro-4-(4-(4- fluorophenyl)-1-piperidinyl)phenyl]-2,5-pyrrolidinediyl]bis[6-fluoro-2-(2S)-2-pyrrolidinyl 1H-benzimidzol e-2,5-diyl)]bis(1-pyrrolidinecarboxylic acid, 1,1-bis(1,1-dimethylethyl)ester

(2S,2S)-[[(2R, 5R)-1-[3,5-difluoro-4-(4-(4- fluorophenyl)-1-piperidinyl)phenyl]-2,5-pyrrolidinediyl]bis[6-fluoro-2-(2S)-2-pyrrolidinyl 1H-benzimidzol e-2,5-diyl)]bis(1-pyrrolidinecarboxylic acid, 1,1-bis(1,1-dimethylethyl)ester

C53H59F5N8O4 (966.4579)


   

2-DODECYL-2-METHYL-1,3-PROPANEDIYL BIS[N-[5-NITRO(BENZO-15-CROWN-5)-4-YL]CARBAMATE]

2-DODECYL-2-METHYL-1,3-PROPANEDIYL BIS[N-[5-NITRO(BENZO-15-CROWN-5)-4-YL]CARBAMATE]

C46H70N4O18 (966.4685)


   

PGP(20:3(5Z,8Z,11Z)/TXB2)

PGP(20:3(5Z,8Z,11Z)/TXB2)

C46H80O17P2 (966.487)


   

PGP(TXB2/20:3(5Z,8Z,11Z))

PGP(TXB2/20:3(5Z,8Z,11Z))

C46H80O17P2 (966.487)


   

PGP(20:3(8Z,11Z,14Z)/TXB2)

PGP(20:3(8Z,11Z,14Z)/TXB2)

C46H80O17P2 (966.487)


   

PGP(TXB2/20:3(8Z,11Z,14Z))

PGP(TXB2/20:3(8Z,11Z,14Z))

C46H80O17P2 (966.487)


   

PGP(20:3(5Z,8Z,11Z)/6 keto-PGF1alpha)

PGP(20:3(5Z,8Z,11Z)/6 keto-PGF1alpha)

C46H80O17P2 (966.487)


   

PGP(6 keto-PGF1alpha/20:3(5Z,8Z,11Z))

PGP(6 keto-PGF1alpha/20:3(5Z,8Z,11Z))

C46H80O17P2 (966.487)


   

PGP(20:3(8Z,11Z,14Z)/6 keto-PGF1alpha)

PGP(20:3(8Z,11Z,14Z)/6 keto-PGF1alpha)

C46H80O17P2 (966.487)


   

PGP(6 keto-PGF1alpha/20:3(8Z,11Z,14Z))

PGP(6 keto-PGF1alpha/20:3(8Z,11Z,14Z))

C46H80O17P2 (966.487)


   

PS(20:4(5Z,8Z,11Z,14Z)/LTE4)

PS(20:4(5Z,8Z,11Z,14Z)/LTE4)

C49H79N2O13PS (966.504)


   

PS(LTE4/20:4(5Z,8Z,11Z,14Z))

PS(LTE4/20:4(5Z,8Z,11Z,14Z))

C49H79N2O13PS (966.504)


   

PS(20:4(8Z,11Z,14Z,17Z)/LTE4)

PS(20:4(8Z,11Z,14Z,17Z)/LTE4)

C49H79N2O13PS (966.504)


   

PS(LTE4/20:4(8Z,11Z,14Z,17Z))

PS(LTE4/20:4(8Z,11Z,14Z,17Z))

C49H79N2O13PS (966.504)


   

PGP(a-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PGP(a-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C47H84O16P2 (966.5234)


   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-21:0)

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-21:0)

C47H84O16P2 (966.5234)


   

PGP(i-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PGP(i-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C47H84O16P2 (966.5234)


   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-21:0)

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-21:0)

C47H84O16P2 (966.5234)


   

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C50H80O14P2 (966.5023)


   

PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:4(7Z,10Z,13Z,16Z))

PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:4(7Z,10Z,13Z,16Z))

C50H80O14P2 (966.5023)


   

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C50H80O14P2 (966.5023)


   

PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:4(7Z,10Z,13Z,16Z))

PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:4(7Z,10Z,13Z,16Z))

C50H80O14P2 (966.5023)


   

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C50H80O14P2 (966.5023)


   

PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:4(7Z,10Z,13Z,16Z))

PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:4(7Z,10Z,13Z,16Z))

C50H80O14P2 (966.5023)


   

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C50H80O14P2 (966.5023)


   

PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:4(7Z,10Z,13Z,16Z))

PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:4(7Z,10Z,13Z,16Z))

C50H80O14P2 (966.5023)


   

PGP(22:4(7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PGP(22:4(7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C50H80O14P2 (966.5023)


   

PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:4(7Z,10Z,13Z,16Z))

PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:4(7Z,10Z,13Z,16Z))

C50H80O14P2 (966.5023)


   

PIP(16:1(9Z)/PGJ2)

PIP(16:1(9Z)/PGJ2)

C45H76O18P2 (966.4507)


   

PIP(PGJ2/16:1(9Z))

PIP(PGJ2/16:1(9Z))

C45H76O18P2 (966.4507)


   

PIP(16:2(9Z,12Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PIP(16:2(9Z,12Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C45H76O18P2 (966.4507)


   

PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:2(9Z,12Z))

PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:2(9Z,12Z))

C45H76O18P2 (966.4507)


   

PIP(16:2(9Z,12Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PIP(16:2(9Z,12Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C45H76O18P2 (966.4507)


   

PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:2(9Z,12Z))

PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:2(9Z,12Z))

C45H76O18P2 (966.4507)


   

PIP(16:2(9Z,12Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PIP(16:2(9Z,12Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C45H76O18P2 (966.4507)


   

PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:2(9Z,12Z))

PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:2(9Z,12Z))

C45H76O18P2 (966.4507)


   

beta-GlcNAc-(1->4)-MurNAc-L-Ala-gamma-D-Glu-L-Lys-(D-Ala)2

beta-GlcNAc-(1->4)-MurNAc-L-Ala-gamma-D-Glu-L-Lys-(D-Ala)2

C39H66N8O20 (966.4393)


   

1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 4-phosphate

1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 4-phosphate

C47H84O16P2 (966.5234)


A 1-phosphatidyl-1D-myo-inositol 4-phosphate in which the phosphatidyl acyl groups at positions 1 and 2 are specified as stearoyl and arachidonoyl respectively.

   

1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 5-phosphate

1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 5-phosphate

C47H84O16P2 (966.5234)


A 1-phosphatidyl-1D-myo-inositol 5-phosphate in which the phosphatidyl acyl groups at positions 1 and 2 are specified as stearoyl and arachidonoyl respectively.

   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(7E,9E,11Z,13E,15E,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(7E,9E,11Z,13E,15E,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C49H76O15P2 (966.4659)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(9Z,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (7E,9E,11E,13E,15Z,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(9Z,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (7E,9E,11E,13E,15Z,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoate

C49H76O15P2 (966.4659)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(7E,9Z,11Z,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(7E,9Z,11Z,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C49H76O15P2 (966.4659)


   

[3-[[3-[[3-[(7Z,9Z,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (3Z,6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-3,6,9,12,15,18,21-heptaenoate

[3-[[3-[[3-[(7Z,9Z,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (3Z,6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-3,6,9,12,15,18,21-heptaenoate

C49H76O15P2 (966.4659)


   

[3-[[3-[[3-[(5E,7Z,9Z,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[3-[[3-[[3-[(5E,7Z,9Z,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C49H76O15P2 (966.4659)


   
   
   
   
   
   
   
   
   
   

10-({3-[(4-{[4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({3-[(4-{[4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-hydroxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-8-(2-methylpropyl)-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-hydroxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-8-(2-methylpropyl)-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

(1r,3ar,3bs,7s,9ar,10s,11s,11as)-1-acetyl-10-(acetyloxy)-7-{[5-({5-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-4-methoxy-2,6-dimethyloxan-2-yl]oxy}-3a,3b-dihydroxy-9a,11a-dimethyl-1h,2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl (2e)-2-methylbut-2-enoate

(1r,3ar,3bs,7s,9ar,10s,11s,11as)-1-acetyl-10-(acetyloxy)-7-{[5-({5-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-4-methoxy-2,6-dimethyloxan-2-yl]oxy}-3a,3b-dihydroxy-9a,11a-dimethyl-1h,2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl (2e)-2-methylbut-2-enoate

C50H78O18 (966.5188)


   

(1's,2r,2's,4s,4's,5s,7's,8'r,9's,12's,13'r,15'r,16'r,18'r,19'r)-4-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-15'-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-16',18',19'-triol

(1's,2r,2's,4s,4's,5s,7's,8'r,9's,12's,13'r,15'r,16'r,18'r,19'r)-4-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-15'-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-16',18',19'-triol

C45H74O22 (966.4672)


   

10-({3-[(4-{[3,4-bis(acetyloxy)-5-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({3-[(4-{[3,4-bis(acetyloxy)-5-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

2,6-bis[(1s,13r,14s,17s,19s)-19-(acetyloxy)-10-hydroxy-13,14,18,18-tetramethyl-7-oxo-2-oxa-6-azapentacyclo[11.8.0.0¹,¹⁷.0³,¹¹.0⁴,⁸]henicosa-3(11),4(8),9-trien-6-yl]hexanoic acid

2,6-bis[(1s,13r,14s,17s,19s)-19-(acetyloxy)-10-hydroxy-13,14,18,18-tetramethyl-7-oxo-2-oxa-6-azapentacyclo[11.8.0.0¹,¹⁷.0³,¹¹.0⁴,⁸]henicosa-3(11),4(8),9-trien-6-yl]hexanoic acid

C56H74N2O12 (966.5241)


   

23-o-acetylhederagenin 3-o-(4-o-acetyl-β-d-xylopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside

NA

C50H78O18 (966.5188)


{"Ingredient_id": "HBIN004140","Ingredient_name": "23-o-acetylhederagenin 3-o-(4-o-acetyl-\u03b2-d-xylopyranosyl)-(1\u21923)-\u03b1-l-rhamnopyranosyl-(1\u21922)-\u03b1-l-arabinopyranoside","Alias": "NA","Ingredient_formula": "C50H78O18","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "411","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

Akebiasaponin D_qt

Mukurozisaponin E_qt; Akebia saponin D_qt; Mukurozi-saponin G_qt; Mukurozisaponin Y_qt; mukurozisaponin G_qt

C50H78O18 (966.5188)


{"Ingredient_id": "HBIN015001","Ingredient_name": "Akebiasaponin D_qt","Alias": "Mukurozisaponin E_qt; Akebia saponin D_qt; Mukurozi-saponin G_qt; Mukurozisaponin Y_qt; mukurozisaponin G_qt","Ingredient_formula": "C50H78O18","Ingredient_Smile": "NA","Ingredient_weight": "967.14","OB_score": "16.44068847","CAS_id": "87733-79-7","SymMap_id": "SMIT05241","TCMID_id": "NA","TCMSP_id": "MOL003107","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5s)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5s)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-2-ethylidene-3,6,9,13,16,20,25-heptahydroxy-18-[(1e,3e,5s,6s)-6-hydroxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-5,19-dimethyl-8-(2-methylpropyl)-1,4,7,10,14,17,21-heptaazacyclopentacosa-1(25),3,6,9,13,16,20-heptaene-11,22-dicarboxylic acid

(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-2-ethylidene-3,6,9,13,16,20,25-heptahydroxy-18-[(1e,3e,5s,6s)-6-hydroxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-5,19-dimethyl-8-(2-methylpropyl)-1,4,7,10,14,17,21-heptaazacyclopentacosa-1(25),3,6,9,13,16,20-heptaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

(2z,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-2-ethylidene-3,6,9,13,16,20,25-heptahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-19-methyl-8-(2-methylpropyl)-1,4,7,10,14,17,21-heptaazacyclopentacosa-1(25),3,6,9,13,16,20-heptaene-11,22-dicarboxylic acid

(2z,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-2-ethylidene-3,6,9,13,16,20,25-heptahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-19-methyl-8-(2-methylpropyl)-1,4,7,10,14,17,21-heptaazacyclopentacosa-1(25),3,6,9,13,16,20-heptaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4s,5r)-3,4-bis(acetyloxy)-5-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4s,5r)-3,4-bis(acetyloxy)-5-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

2,6-bis[19-(acetyloxy)-10-hydroxy-13,14,18,18-tetramethyl-7-oxo-2-oxa-6-azapentacyclo[11.8.0.0¹,¹⁷.0³,¹¹.0⁴,⁸]henicosa-3(11),4(8),9-trien-6-yl]hexanoic acid

2,6-bis[19-(acetyloxy)-10-hydroxy-13,14,18,18-tetramethyl-7-oxo-2-oxa-6-azapentacyclo[11.8.0.0¹,¹⁷.0³,¹¹.0⁴,⁸]henicosa-3(11),4(8),9-trien-6-yl]hexanoic acid

C56H74N2O12 (966.5241)


   

(2z,5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-2-ethylidene-3,6,9,13,16,20,25-heptahydroxy-18-[(1e,3e,5s,6s)-6-hydroxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-5,19-dimethyl-8-(2-methylpropyl)-1,4,7,10,14,17,21-heptaazacyclopentacosa-1(25),3,6,9,13,16,20-heptaene-11,22-dicarboxylic acid

(2z,5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-2-ethylidene-3,6,9,13,16,20,25-heptahydroxy-18-[(1e,3e,5s,6s)-6-hydroxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-5,19-dimethyl-8-(2-methylpropyl)-1,4,7,10,14,17,21-heptaazacyclopentacosa-1(25),3,6,9,13,16,20-heptaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5s)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5s)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

10-({3-[(4-{[4-(acetyloxy)-5-[(acetyloxy)methyl]-3-hydroxyoxolan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({3-[(4-{[4-(acetyloxy)-5-[(acetyloxy)methyl]-3-hydroxyoxolan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-4-(acetyloxy)-5-[(acetyloxy)methyl]-3-hydroxyoxolan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-4-(acetyloxy)-5-[(acetyloxy)methyl]-3-hydroxyoxolan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(5r,8s,11r,12s,15s,18s,19s,22r)-15-(4-carbamimidamidobutyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,8,12,19-pentamethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

(5r,8s,11r,12s,15s,18s,19s,22r)-15-(4-carbamimidamidobutyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,8,12,19-pentamethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

10-({3-[(4-{[5-(acetyloxy)-3,4-dihydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-[(acetyloxy)methyl]-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({3-[(4-{[5-(acetyloxy)-3,4-dihydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-[(acetyloxy)methyl]-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5s)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5s)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(5r,8s,11r,15s,18s,19s,22r)-8-(4-carbamimidamidobutyl)-15-ethyl-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

(5r,8s,11r,15s,18s,19s,22r)-8-(4-carbamimidamidobutyl)-15-ethyl-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

10-({3-[(4-{[3,5-bis(acetyloxy)-4-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({3-[(4-{[3,5-bis(acetyloxy)-4-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,19-dimethyl-2-methylidene-8-(2-methylpropyl)-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

(8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,19-dimethyl-2-methylidene-8-(2-methylpropyl)-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-5-(acetyloxy)-3,4-dihydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-[(acetyloxy)methyl]-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-5-(acetyloxy)-3,4-dihydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-[(acetyloxy)methyl]-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4s,5s)-3,5-bis(acetyloxy)-4-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4s,5s)-3,5-bis(acetyloxy)-4-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20,25-heptahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-5,19-dimethyl-2-methylidene-8-(2-methylpropyl)-1,4,7,10,14,17,21-heptaazacyclopentacosa-1(25),3,6,9,13,16,20-heptaene-11,22-dicarboxylic acid

(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20,25-heptahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-5,19-dimethyl-2-methylidene-8-(2-methylpropyl)-1,4,7,10,14,17,21-heptaazacyclopentacosa-1(25),3,6,9,13,16,20-heptaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

4-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-15'-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-16',18',19'-triol

4-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-15'-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-16',18',19'-triol

C45H74O22 (966.4672)


   

[(2r,3s,4r,5r,6s)-4-hydroxy-6-[(1s,2s,6r,7s,8r,9s,12s,13r,16s)-6-hydroxy-7,9,13-trimethyl-6-[(3s)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]-2-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxidanesulfonic acid

[(2r,3s,4r,5r,6s)-4-hydroxy-6-[(1s,2s,6r,7s,8r,9s,12s,13r,16s)-6-hydroxy-7,9,13-trimethyl-6-[(3s)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]-2-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxidanesulfonic acid

C45H74O20S (966.4494)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4s,5r)-3,5-bis(acetyloxy)-4-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4s,5r)-3,5-bis(acetyloxy)-4-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

butyl (2s,3s,4s,5r,6r)-6-{[(1r,2s,4s,5s,8r,10s,14r,15r,18s,20r)-1,2,8,15,19,19-hexamethyl-5-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)hexacyclo[12.8.0.0²,¹¹.0⁴,⁸.0⁵,¹⁰.0¹⁵,²⁰]docos-11-en-18-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylate

butyl (2s,3s,4s,5r,6r)-6-{[(1r,2s,4s,5s,8r,10s,14r,15r,18s,20r)-1,2,8,15,19,19-hexamethyl-5-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)hexacyclo[12.8.0.0²,¹¹.0⁴,⁸.0⁵,¹⁰.0¹⁵,²⁰]docos-11-en-18-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylate

C50H78O18 (966.5188)


   

(5r,8s,11r,12s,15s,18s,19s,22r)-8-(3-carbamimidamidopropyl)-15-ethyl-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

(5r,8s,11r,12s,15s,18s,19s,22r)-8-(3-carbamimidamidopropyl)-15-ethyl-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

butyl 6-{[1,2,8,15,19,19-hexamethyl-5-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)hexacyclo[12.8.0.0²,¹¹.0⁴,⁸.0⁵,¹⁰.0¹⁵,²⁰]docos-11-en-18-yl]oxy}-3,4-dihydroxy-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylate

butyl 6-{[1,2,8,15,19,19-hexamethyl-5-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)hexacyclo[12.8.0.0²,¹¹.0⁴,⁸.0⁵,¹⁰.0¹⁵,²⁰]docos-11-en-18-yl]oxy}-3,4-dihydroxy-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylate

C50H78O18 (966.5188)