Exact Mass: 932.575465

Exact Mass Matches: 932.575465

Found 181 metabolites which its exact mass value is equals to given mass value 932.575465, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Notoginsenoside R1

2-{[2-(8-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-5,16-dihydroxy-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl)-6-methylhept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C47H80O18 (932.5344380000001)


Notoginsenoside R1 is a ginsenoside found in Panax notoginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antioxidant, a neuroprotective agent, an apoptosis inducer and a phytoestrogen. It is a beta-D-glucoside, a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a disaccharide derivative, a ginsenoside, a tetracyclic triterpenoid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Notoginsenoside R1 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. See also: Panax notoginseng root (part of). Notoginsenoside R1 is found in tea. Notoginsenoside R1 is a constituent of roots of Panax notoginseng (ginseng) Constituent of roots of Panax notoginseng (ginseng). Notoginsenoside R1 is found in tea. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3]. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3].

   
   

PI(18:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2R)-3-(octadecanoyloxy)-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C47H81O16P (932.5261955999999)


PI(18:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of octadecanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:0)

[(2R)-2-(octadecanoyloxy)-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C47H81O16P (932.5261955999999)


PI(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:0) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:0), in particular, consists of one chain of Lipoxin A5 at the C-1 position and one chain of octadecanoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:1(11Z)/PGE2)

[(1R,6R,12Z,15R,18R,19S,20R,21R,22R,23S,24R)-3,18,20,21,22,23,24-heptahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8,16-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracos-12-en-6-yl]methyl (11Z)-octadec-11-enoate

C47H81O16P (932.5261955999999)


PI(18:1(11Z)/PGE2) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(11Z)/PGE2), in particular, consists of one chain of 11Z-octadecenoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGE2/18:1(11Z))

(1R,6R,13Z,16R,19R,20S,21R,22R,23R,24S,25R)-3,19,21,22,23,24,25-heptahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9,17-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacos-13-en-6-yl (11Z)-octadec-11-enoate

C47H81O16P (932.5261955999999)


PI(PGE2/18:1(11Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGE2/18:1(11Z)), in particular, consists of one chain of Prostaglandin E2 at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:1(11Z)/PGD2)

[(1R,6R,12Z,15S,16S,19R,20R,21R,22R,23S,24R)-3,16,20,21,22,23,24-heptahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8,18-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracos-12-en-6-yl]methyl (11Z)-octadec-11-enoate

C47H81O16P (932.5261955999999)


PI(18:1(11Z)/PGD2) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(11Z)/PGD2), in particular, consists of one chain of 11Z-octadecenoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGD2/18:1(11Z))

(1R,6R,13Z,16S,17S,20R,21R,22R,23R,24S,25R)-3,17,21,22,23,24,25-heptahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9,19-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacos-13-en-6-yl (11Z)-octadec-11-enoate

C47H81O16P (932.5261955999999)


PI(PGD2/18:1(11Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGD2/18:1(11Z)), in particular, consists of one chain of Prostaglandin D2 at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:1(11Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C47H81O16P (932.5261955999999)


PI(18:1(11Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(11Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of 11Z-octadecenoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(11Z))

[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C47H81O16P (932.5261955999999)


PI(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(11Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(11Z)), in particular, consists of one chain of Lipoxin A4 at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:1(9Z)/PGE2)

[(1R,6R,12Z,15R,18R,19S,20R,21R,22R,23S,24R)-3,18,20,21,22,23,24-heptahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8,16-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracos-12-en-6-yl]methyl (9Z)-octadec-9-enoate

C47H81O16P (932.5261955999999)


PI(18:1(9Z)/PGE2) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(9Z)/PGE2), in particular, consists of one chain of 9Z-octadecenoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGE2/18:1(9Z))

(1R,6R,13Z,16R,19R,20S,21R,22R,23R,24S,25R)-3,19,21,22,23,24,25-heptahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9,17-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacos-13-en-6-yl (9Z)-octadec-9-enoate

C47H81O16P (932.5261955999999)


PI(PGE2/18:1(9Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGE2/18:1(9Z)), in particular, consists of one chain of Prostaglandin E2 at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:1(9Z)/PGD2)

[(1R,6R,12Z,15S,16S,19R,20R,21R,22R,23S,24R)-3,16,20,21,22,23,24-heptahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8,18-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracos-12-en-6-yl]methyl (9Z)-octadec-9-enoate

C47H81O16P (932.5261955999999)


PI(18:1(9Z)/PGD2) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(9Z)/PGD2), in particular, consists of one chain of 9Z-octadecenoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGD2/18:1(9Z))

(1R,6R,13Z,16S,17S,20R,21R,22R,23R,24S,25R)-3,17,21,22,23,24,25-heptahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9,19-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacos-13-en-6-yl (9Z)-octadec-9-enoate

C47H81O16P (932.5261955999999)


PI(PGD2/18:1(9Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGD2/18:1(9Z)), in particular, consists of one chain of Prostaglandin D2 at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C47H81O16P (932.5261955999999)


PI(18:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of 9Z-octadecenoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(9Z))

[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C47H81O16P (932.5261955999999)


PI(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(9Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(9Z)), in particular, consists of one chain of Lipoxin A4 at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:2(9Z,12Z)/PGF2alpha)

[(1R,6R,12E,15S,16S,18R,19S,20R,21R,22R,23S,24R)-3,16,18,20,21,22,23,24-octahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8-dioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracos-12-en-6-yl]methyl (9Z,12Z)-octadeca-9,12-dienoate

C47H81O16P (932.5261955999999)


PI(18:2(9Z,12Z)/PGF2alpha) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:2(9Z,12Z)/PGF2alpha), in particular, consists of one chain of 9Z,12Z-octadecadienoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGF2alpha/18:2(9Z,12Z))

(1R,6R,13E,16S,17S,19R,20S,21R,22R,23R,24S,25R)-3,17,19,21,22,23,24,25-octahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9-dioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacos-13-en-6-yl (9Z,12Z)-octadeca-9,12-dienoate

C47H81O16P (932.5261955999999)


PI(PGF2alpha/18:2(9Z,12Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGF2alpha/18:2(9Z,12Z)), in particular, consists of one chain of Prostaglandin F2alpha at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:2(9Z,12Z)/PGE1)

[(1R,6R,15R,18R,19S,20R,21R,22R,23S,24R)-3,18,20,21,22,23,24-heptahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8,16-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosan-6-yl]methyl (9Z,12Z)-octadeca-9,12-dienoate

C47H81O16P (932.5261955999999)


PI(18:2(9Z,12Z)/PGE1) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:2(9Z,12Z)/PGE1), in particular, consists of one chain of 9Z,12Z-octadecadienoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGE1/18:2(9Z,12Z))

(1R,6R,16R,19R,20S,21R,22R,23R,24S,25R)-3,19,21,22,23,24,25-heptahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9,17-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosan-6-yl (9Z,12Z)-octadeca-9,12-dienoate

C47H81O16P (932.5261955999999)


PI(PGE1/18:2(9Z,12Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGE1/18:2(9Z,12Z)), in particular, consists of one chain of Prostaglandin E1 at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:2(9Z,12Z)/PGD1)

[(1R,6R,15S,16S,19R,20R,21R,22R,23S,24R)-3,16,20,21,22,23,24-heptahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8,18-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosan-6-yl]methyl (9Z,12Z)-octadeca-9,12-dienoate

C47H81O16P (932.5261955999999)


PI(18:2(9Z,12Z)/PGD1) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:2(9Z,12Z)/PGD1), in particular, consists of one chain of 9Z,12Z-octadecadienoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGD1/18:2(9Z,12Z))

(1R,6R,16S,17S,20R,21R,22R,23R,24S,25R)-3,17,21,22,23,24,25-heptahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9,19-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosan-6-yl (9Z,12Z)-octadeca-9,12-dienoate

C47H81O16P (932.5261955999999)


PI(PGD1/18:2(9Z,12Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGD1/18:2(9Z,12Z)), in particular, consists of one chain of Prostaglandin D1 at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:3(6Z,9Z,12Z)/PGF1alpha)

[(1R,6R,15S,16S,18R,19S,20R,21R,22R,23S,24R)-3,16,18,20,21,22,23,24-octahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8-dioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosan-6-yl]methyl (6Z,9Z,12Z)-octadeca-6,9,12-trienoate

C47H81O16P (932.5261955999999)


PI(18:3(6Z,9Z,12Z)/PGF1alpha) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:3(6Z,9Z,12Z)/PGF1alpha), in particular, consists of one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGF1alpha/18:3(6Z,9Z,12Z))

(1R,6R,16S,17S,19R,20S,21R,22R,23R,24S,25R)-3,17,19,21,22,23,24,25-octahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9-dioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosan-6-yl (6Z,9Z,12Z)-octadeca-6,9,12-trienoate

C47H81O16P (932.5261955999999)


PI(PGF1alpha/18:3(6Z,9Z,12Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGF1alpha/18:3(6Z,9Z,12Z)), in particular, consists of one chain of Prostaglandin F1alpha at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:3(9Z,12Z,15Z)/PGF1alpha)

[(1R,6R,15S,16S,18R,19S,20R,21R,22R,23S,24R)-3,16,18,20,21,22,23,24-octahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8-dioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosan-6-yl]methyl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C47H81O16P (932.5261955999999)


PI(18:3(9Z,12Z,15Z)/PGF1alpha) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:3(9Z,12Z,15Z)/PGF1alpha), in particular, consists of one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGF1alpha/18:3(9Z,12Z,15Z))

(1R,6R,16S,17S,19R,20S,21R,22R,23R,24S,25R)-3,17,19,21,22,23,24,25-octahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9-dioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosan-6-yl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C47H81O16P (932.5261955999999)


PI(PGF1alpha/18:3(9Z,12Z,15Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGF1alpha/18:3(9Z,12Z,15Z)), in particular, consists of one chain of Prostaglandin F1alpha at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:0/20:3(6,8,11)-OH(5))

[(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-(icosanoyloxy)propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C49H89O14P (932.5989624)


PI(20:0/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of eicosanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:3(6,8,11)-OH(5)/20:0)

[(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-(icosanoyloxy)propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C49H89O14P (932.5989624)


PI(20:3(6,8,11)-OH(5)/20:0) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:3(6,8,11)-OH(5)/20:0), in particular, consists of one chain of 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of eicosanoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:2(11Z,14Z)/5-iso PGF2VI)

[(1R,6R,10Z,13R,14S,16R,17S,18R,19R,20R,21S,22R)-3,14,16,18,19,20,21,22-octahydroxy-17-[(1E,3R)-3-hydroxyoct-1-en-1-yl]-3,8-dioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[11.6.3]docos-10-en-6-yl]methyl (11Z,14Z)-icosa-11,14-dienoate

C47H81O16P (932.5261955999999)


PI(20:2(11Z,14Z)/5-iso PGF2VI) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:2(11Z,14Z)/5-iso PGF2VI), in particular, consists of one chain of 11Z,14Z-eicosadienoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(5-iso PGF2VI/20:2(11Z,14Z))

(1R,6R,11Z,14R,15S,17R,18S,19R,20R,21R,22S,23R)-3,15,17,19,20,21,22,23-octahydroxy-18-[(1E,3R)-3-hydroxyoct-1-en-1-yl]-3,9-dioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[12.6.3]tricos-11-en-6-yl (11Z,14Z)-icosa-11,14-dienoate

C47H81O16P (932.5261955999999)


PI(5-iso PGF2VI/20:2(11Z,14Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(5-iso PGF2VI/20:2(11Z,14Z)), in particular, consists of one chain of 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   
   
   
   

(3beta,6alpha,12beta)-20-[(alpha-L-arabinopyranosyl)-(1->6)-beta-D-glucopyranosyl)oxy]-6-[(beta-D-glucopyranosyl)oxy]dammar-24-ene-3,12-diol|notoginsenoside FP1

(3beta,6alpha,12beta)-20-[(alpha-L-arabinopyranosyl)-(1->6)-beta-D-glucopyranosyl)oxy]-6-[(beta-D-glucopyranosyl)oxy]dammar-24-ene-3,12-diol|notoginsenoside FP1

C47H80O18 (932.5344380000001)


   

(2S)-1,2-O-6,9,12,15-Dioctadecatetraenoyl-3-O-[??-D-galactopyranosyl-(1鈥樏傗垎6)-O-??-D-galactopyranosyl]-glycerol

(2S)-1,2-O-6,9,12,15-Dioctadecatetraenoyl-3-O-[??-D-galactopyranosyl-(1鈥樏傗垎6)-O-??-D-galactopyranosyl]-glycerol

C51H80O15 (932.549693)


   
   
   
   
   

3beta,12beta,20(S),25-tetrahydroxydammar-23-ene-3-O-beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside|notoginsenoside ST-5

3beta,12beta,20(S),25-tetrahydroxydammar-23-ene-3-O-beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside|notoginsenoside ST-5

C47H80O18 (932.5344380000001)


   
   

6-O-beta-D-glucopyranosyl-20-O-[alpha-L-arabinofuranosyl-(1->6)-beta-D-glucopyranosyl]-dammar-24-ene-3beta,6alpha,12beta,20S-tetraol|ginsenoside F6|quinquenoside F6

6-O-beta-D-glucopyranosyl-20-O-[alpha-L-arabinofuranosyl-(1->6)-beta-D-glucopyranosyl]-dammar-24-ene-3beta,6alpha,12beta,20S-tetraol|ginsenoside F6|quinquenoside F6

C47H80O18 (932.5344380000001)


   

(20S)-20-O-[beta-D-xylopyranosyl-(1?6)-beta-D-glucopyranosyl-(1?6)-beta-D-glucopyranosyl]dammar-24-ene-3beta,6alpha,12beta,20-tetrol|(3beta,6alpha,12beta)-3,6,12-trihydroxydammar-24-en-20-yl O-beta-D-xylopyranosyl-(1?6)-O-beta-D-glucopyranosyl-(1?6)-beta-D-glucopyranoside

(20S)-20-O-[beta-D-xylopyranosyl-(1?6)-beta-D-glucopyranosyl-(1?6)-beta-D-glucopyranosyl]dammar-24-ene-3beta,6alpha,12beta,20-tetrol|(3beta,6alpha,12beta)-3,6,12-trihydroxydammar-24-en-20-yl O-beta-D-xylopyranosyl-(1?6)-O-beta-D-glucopyranosyl-(1?6)-beta-D-glucopyranoside

C47H80O18 (932.5344380000001)


   
   
   

Notoginsenoside R1

Notoginsenoside R1

C47H80O18 (932.5344380000001)


Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3]. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3].

   

(3beta,12beta,24xi)-12,20,24-trihydroxydammar-25-en-3-yl O-beta-D-xylopyranosyl-(1->2)-O-beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside|notoginsenoside Ft3

(3beta,12beta,24xi)-12,20,24-trihydroxydammar-25-en-3-yl O-beta-D-xylopyranosyl-(1->2)-O-beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside|notoginsenoside Ft3

C47H80O18 (932.5344380000001)


   

(3beta,20S,24R)Dammarane-3,20,24,25-tetrol

(3beta,20S,24R)Dammarane-3,20,24,25-tetrol

C48H84O17 (932.5708214000001)


   
   

C47H80O18_(3beta,5xi,6alpha,9xi,12beta)-3,12-Dihydroxy-6-{[2-O-(beta-D-xylopyranosyl)-beta-D-glucopyranosyl]oxy}dammar-24-en-20-yl beta-D-glucopyranoside

NCGC00384801-01_C47H80O18_(3beta,5xi,6alpha,9xi,12beta)-3,12-Dihydroxy-6-{[2-O-(beta-D-xylopyranosyl)-beta-D-glucopyranosyl]oxy}dammar-24-en-20-yl beta-D-glucopyranoside

C47H80O18 (932.5344380000001)


   

DGDG(18:4(6Z,9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z))

1,2-di-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-3-O-beta-D-galactosyl-sn-glycerol

C51H80O15 (932.549693)


   

PI(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-(8Z,11Z,14Z-eicosatrienoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phospho-(1-myo-inositol)

C51H81O13P (932.5414506)


   

PI(20:5(5Z,8Z,11Z,14Z,17Z)/22:4(7Z,10Z,13Z,16Z))

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phospho-(1-myo-inositol)

C51H81O13P (932.5414506)


   

PI(22:4(7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phospho-(1-myo-inositol)

C51H81O13P (932.5414506)


   

PI(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z))

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phospho-(1-myo-inositol)

C51H81O13P (932.5414506)


   

DGDG 36:8

1,2-di-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-3-O-(alpha-D-galactosyl-1-6-beta-D-galactosyl)-sn-glycerol

C51H80O15 (932.549693)


   

PI 42:9

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phospho-(1-myo-inositol)

C51H81O13P (932.5414506)


   

80418-24-2

(2S,3R,4S,5S,6R)-2-[(1S)-1-[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-6-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-methylol-3-[(2S,3R,4S,5R)-3,4,5-trihydroxytetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-3,12-dihydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15

C47H80O18 (932.5344380000001)


Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3]. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3].

   

(2S,3R,4S,5S,6R)-2-[(2S)-2-[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-6-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2R,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-3,12-dihydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]-6-methylhept-5-en-2-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

(2S,3R,4S,5S,6R)-2-[(2S)-2-[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-6-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2R,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-3,12-dihydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]-6-methylhept-5-en-2-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C47H80O18 (932.5344380000001)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[(2R)-1-[hydroxy-[(2R,3R,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-icosanoyloxypropan-2-yl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate

[(2R)-1-[hydroxy-[(2R,3R,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-icosanoyloxypropan-2-yl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate

C49H89O14P (932.5989624)


   

[(2R)-3-[hydroxy-[(2R,3R,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-icosanoyloxypropyl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate

[(2R)-3-[hydroxy-[(2R,3R,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-icosanoyloxypropyl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate

C49H89O14P (932.5989624)


   

PI(18:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PI(18:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C47H81O16P (932.5261955999999)


   

PI(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:0)

PI(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:0)

C47H81O16P (932.5261955999999)


   

PI(18:1(11Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PI(18:1(11Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C47H81O16P (932.5261955999999)


   

PI(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(11Z))

PI(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(11Z))

C47H81O16P (932.5261955999999)


   

PI(18:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PI(18:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C47H81O16P (932.5261955999999)


   

PI(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(9Z))

PI(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(9Z))

C47H81O16P (932.5261955999999)


   

2-[[(2R)-2-[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H87NO11P+ (932.6016421999999)


   

2-[[(2R)-3-[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H87NO11P+ (932.6016421999999)


   

2-[[(2R)-2-[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H87NO11P+ (932.6016421999999)


   

2-[[(2R)-3-[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H87NO11P+ (932.6016421999999)


   

(2S,3R,4S,5S,6R)-2-[(2R)-2-[(3S,5R,6S,8R,9R,10R,12R,14R,17S)-6-[(3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-3,12-dihydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]-6-methylhept-5-en-2-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

(2S,3R,4S,5S,6R)-2-[(2R)-2-[(3S,5R,6S,8R,9R,10R,12R,14R,17S)-6-[(3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-3,12-dihydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]-6-methylhept-5-en-2-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C47H80O18 (932.5344380000001)


   
   
   

[3-[[3-[(3-Hexadecanoyloxy-2-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] icosanoate

[3-[[3-[(3-Hexadecanoyloxy-2-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] icosanoate

C45H90O15P2 (932.575465)


   

[2-Hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-tetradecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] docosanoate

[2-Hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-tetradecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] docosanoate

C45H90O15P2 (932.575465)


   

[2-Hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-octadecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] octadecanoate

[2-Hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-octadecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] octadecanoate

C45H90O15P2 (932.575465)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C52H85O12P (932.5778339999999)


   

[1-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C52H85O12P (932.5778339999999)


   

[6-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C52H84O12S (932.5683184000001)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C51H80O15 (932.549693)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C51H80O15 (932.549693)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C51H80O15 (932.549693)


   

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C51H80O15 (932.549693)


   

[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C51H81O13P (932.5414506)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C51H81O13P (932.5414506)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C51H81O13P (932.5414506)


   

[2-[(Z)-7-[6-[(E)-3-hydroxyoct-1-enyl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-octadec-9-enoate

[2-[(Z)-7-[6-[(E)-3-hydroxyoct-1-enyl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-octadec-9-enoate

C47H81O16P (932.5261955999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (6E,8Z,10E,14Z,16E)-5,12,18-trihydroxyicosa-6,8,10,14,16-pentaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (6E,8Z,10E,14Z,16E)-5,12,18-trihydroxyicosa-6,8,10,14,16-pentaenoate

C47H81O16P (932.5261955999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (7Z,9Z,11E,13Z)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (7Z,9Z,11E,13Z)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoate

C47H81O16P (932.5261955999999)


   

[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C51H81O13P (932.5414506)


   

[2-[(Z)-7-[6-[(1E,5Z)-3-hydroxyocta-1,5-dienyl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] octadecanoate

[2-[(Z)-7-[6-[(1E,5Z)-3-hydroxyocta-1,5-dienyl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] octadecanoate

C47H81O16P (932.5261955999999)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C51H81O13P (932.5414506)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C51H81O13P (932.5414506)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C51H81O13P (932.5414506)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C51H81O13P (932.5414506)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C51H81O13P (932.5414506)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C51H81O13P (932.5414506)


   

[(2S)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2S)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C51H80O15 (932.549693)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C51H81O13P (932.5414506)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoate

C51H81O13P (932.5414506)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C51H80O15 (932.549693)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C51H80O15 (932.549693)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C51H80O15 (932.549693)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoate

C51H81O13P (932.5414506)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C51H81O13P (932.5414506)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C51H81O13P (932.5414506)


   

[(2S)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2S)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C51H80O15 (932.549693)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C51H81O13P (932.5414506)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C51H81O13P (932.5414506)


   

[(2S)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2S)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C51H80O15 (932.549693)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

C51H80O15 (932.549693)


   

[(2S)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2S)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C51H80O15 (932.549693)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C51H81O13P (932.5414506)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C51H81O13P (932.5414506)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoate

C51H81O13P (932.5414506)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C51H81O13P (932.5414506)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C51H81O13P (932.5414506)


   

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C56H87NO8P+ (932.6168971999999)


   

2-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C56H87NO8P+ (932.6168971999999)


   

2-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C56H87NO8P+ (932.6168971999999)


   

Notoginsenoside

.BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,6.ALPHA.,12.BETA.)-20-(.BETA.-D-GLUCOPYRANOSYLOXY)-3,12-DIHYDROXYDAMMAR-24-EN-6-YL 2-O-.BETA.-D-XYLOPYRANOSYL-

C47H80O18 (932.5344380000001)


Notoginsenoside R1 is a ginsenoside found in Panax notoginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antioxidant, a neuroprotective agent, an apoptosis inducer and a phytoestrogen. It is a beta-D-glucoside, a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a disaccharide derivative, a ginsenoside, a tetracyclic triterpenoid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Notoginsenoside R1 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. See also: Panax notoginseng root (part of). A ginsenoside found in Panax notoginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3]. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3].

   

PIP(35:0)

PIP(18:0_17:0)

C44H86O16P2 (932.5390816)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

DLCL(36:0)

DLCL(18:0_18:0)

C45H90O15P2 (932.575465)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-2-[(1-{1-hydroxy-5-methyl-1-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]hex-4-en-1-yl}-9a-(hydroxymethyl)-3a,3b,6,6-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl)oxy]-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-2-[(1-{1-hydroxy-5-methyl-1-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]hex-4-en-1-yl}-9a-(hydroxymethyl)-3a,3b,6,6-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl)oxy]-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C47H80O18 (932.5344380000001)


   

(2r,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-6-{[(1s,3r,6s,7s,8r,11s,12s,14s,16r)-15-[(2r,5s)-5,6-dihydroxy-6-methylheptan-2-yl]-7-(hydroxymethyl)-7,12,16-trimethyl-6-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-14-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methoxy}-6-methyloxane-3,4,5-triol

(2r,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-6-{[(1s,3r,6s,7s,8r,11s,12s,14s,16r)-15-[(2r,5s)-5,6-dihydroxy-6-methylheptan-2-yl]-7-(hydroxymethyl)-7,12,16-trimethyl-6-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-14-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methoxy}-6-methyloxane-3,4,5-triol

C47H80O18 (932.5344380000001)


   

(2s,3r,4s,5s,6r)-2-{[2-(11-hydroxy-3a,3b,6,6-tetramethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-tetradecahydrocyclopenta[a]phenanthren-1-yl)-6-methylhept-5-en-2-yl]oxy}-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[2-(11-hydroxy-3a,3b,6,6-tetramethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-tetradecahydrocyclopenta[a]phenanthren-1-yl)-6-methylhept-5-en-2-yl]oxy}-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C47H80O18 (932.5344380000001)


   

11,35-dimethyl (3s,4r,5r,8s,11r,13r,14s,17r,24r,29r,32s,33r,35r,38s,41r,42r)-20,21-dihydroxy-5,8,11,14,17,22,29,32,35,38,41,46-dodecamethyl-2,25-dioxaundecacyclo[24.20.0.0³,²⁴.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³.0¹⁸,²³.0²⁸,⁴⁵.0²⁹,⁴².0³²,⁴¹.0³³,³⁸]hexatetraconta-1(46),18(23),19,21,26,28(45)-hexaene-11,35-dicarboxylate

11,35-dimethyl (3s,4r,5r,8s,11r,13r,14s,17r,24r,29r,32s,33r,35r,38s,41r,42r)-20,21-dihydroxy-5,8,11,14,17,22,29,32,35,38,41,46-dodecamethyl-2,25-dioxaundecacyclo[24.20.0.0³,²⁴.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³.0¹⁸,²³.0²⁸,⁴⁵.0²⁹,⁴².0³²,⁴¹.0³³,³⁸]hexatetraconta-1(46),18(23),19,21,26,28(45)-hexaene-11,35-dicarboxylate

C60H84O8 (932.6165864000001)