Exact Mass: 926.4792
Exact Mass Matches: 926.4792
Found 169 metabolites which its exact mass value is equals to given mass value 926.4792
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Araloside A
Chikusetsusaponin-IV is a triterpenoid saponin. It has a role as a metabolite. Araloside A is a natural product found in Kalopanax septemlobus, Bassia muricata, and other organisms with data available. Araloside A is found in green vegetables. Araloside A is from Aralia elata (Japanese angelica tree From Aralia elata (Japanese angelica tree). Araloside A is found in green vegetables. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1]. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1].
Chikusetsusaponin Ib
Chikusetsusaponin-Ib is a triterpenoid saponin. It has a role as a metabolite.
Durupcoside A
Durupcoside A is found in green vegetables. Durupcoside A is a constituent of Aralia elata (Japanese angelica tree) Constituent of Aralia elata (Japanese angelica tree). Durupcoside A is found in green vegetables.
Quinoside D
Constituent of quinoa grains (Chenopodium quinoa), and root of Chinese cucumber (Momordica cochinchinensis). Quinoside D is found in cereals and cereal products, green vegetables, and malabar spinach. Hemsloside Ma 1 is found in bitter gourd. Hemsloside Ma 1 is a constituent of Chinese cucumber (Momordica cochinchinensis). Momordin IIc (Quinoside D) is a triterpenoid glycoside isolated from Bougainvillea glabra[1].
Cynarasaponin H
Cynarasaponin H is found in herbs and spices. Cynarasaponin H is a constituent of Cynara cardunculus (cardoon). Constituent of Cynara cardunculus (cardoon). Cynarasaponin H is found in herbs and spices.
Durupcoside B
Tarasaponin II is found in green vegetables. Tarasaponin II is a constituent of Aralia elata (Japanese angelica tree). Constituent of Aralia elata (Japanese angelica tree). Tarasaponin II is found in green vegetables.
Tarasaponin I
Tarasaponin I is found in green vegetables. Tarasaponin I is a constituent of Aralia elata (Japanese angelica tree). Constituent of Aralia elata (Japanese angelica tree). Tarasaponin I is found in green vegetables.
Tyr-Leu-Tyr-Glu-Ile-Ala-Arg
Kudinoside A
Kudinoside F
PI(18:3(6Z,9Z,12Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
PI(18:3(6Z,9Z,12Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:3(6Z,9Z,12Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:3(6Z,9Z,12Z))
PI(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:3(6Z,9Z,12Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of Lipoxin A5 at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(18:3(9Z,12Z,15Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
PI(18:3(9Z,12Z,15Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:3(9Z,12Z,15Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:3(9Z,12Z,15Z))
PI(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:3(9Z,12Z,15Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of Lipoxin A5 at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
Pseudoginsenoside Rt1
Pseudoginsenoside RT1 is a triterpenoid saponin. It has a role as a metabolite. Pseudoginsenoside Rt1 is a natural product found in Caroxylon imbricatum and Panax japonicus with data available. A natural product found in Panax japonicus var. major. Pseudoginsenoside RT1, isolated from the fruit of Randia siamensis, exhibits acute ichthyotoxic activity[1]. Pseudoginsenoside RT1, isolated from the fruit of Randia siamensis, exhibits acute ichthyotoxic activity[1].
3-O-[beta-D-glucopyranosyl-(1-2)-(beta-D-xylopyranosyl-(1-3))-beta-D-glucuronopyranosyl]-3beta-hydroxyolean-12-en-28-oic acid
3beta-[(O-beta-D-glucopyranosyl-(1 -> 3)-alpha-L-arabinopyranosyl)oxy]-23-oxo-olean-12-en-28-oic acid beta-D-glucopyranoside
3-O-alpha-L-rhamnopyranosyl(1<*>2)-beta-D-xylopyranosyl(1<*>2)-beta-D-glucuronopyranosyl 3beta,22beta,24-trihydroxy-11-oxoolean-12-ene|3-O-alpha-L-rhamnopyranosyl(1[*]2)-beta-D-xylopyranosyl(1[*]2)-beta-D-glucuronopyranosyl 3beta,22beta,24-trihydroxy-11-oxoolean-12-ene
3beta-([3]O4-beta-D-glucopyranosyl-lin-tri[1beta=>4]-D-ribo-2,6-dideoxy-hexopyranosyloxy)-14-hydroxy-5beta,14beta-card-20(22)-enolide|3beta-([3]O4-beta-D-Glucopyranosyl-lin-tri[1beta=>4]-D-ribo-2,6-didesoxy-hexopyranosyloxy)-14-hydroxy-5beta,14beta-card-20(22)-enolid|Deacetyllanatoside A|digitoxigen (beta-D-glucopyranosyl)-(1?4)-(2,6-dideoxy-beta-D-ribohexopyranosyl)-(1?4)-(2,6-dideoxy-beta-D-ribohexopyranosyl)-(1?4)-2,6-dideoxy-beta-D-ribohexopyranoside|digitoxigenin 3-O-beta-D-glucopyranosyl-(1?4)-beta-D-digitoxopyranosyl-(1?4)-beta-D-digitoxopyranosyl-(1?4)-beta-D-digitoxopyranoside|purpurea glycoside A
(3beta)-28-hydroxy-28-oxoolean-12-en-3-yl-beta-D-xylopyranosyl-(1->3)-beta-D-galactopyranosyl-(1->3)-beta-D-glucopyranosiduronic acid|3-O-[beta-D-xylopyranosyl-(1->3)-beta-D-galactopyranosyl-(1->3)-beta-glucuronopyranosyl]oleanolic acid
gypsogenin 3-O-[beta-D-xylopyranosyl-(1->3)-beta-D-glucopyranoside]-28-O-{beta-D-glucopyranosyl} ester
oleanolic acid 3-O-beta-D-galactopyranosyl(1?2)[alpha-L-arabinopyranosyl(1?4)]beta-D-glucuronopyranoside|scheffleside G
3-O-[alpha-L-arabinopyranosyl-(1->2)-beta-D-quinovopyranosyl]quinovic acid 28-O-beta-D-glucopyranosyl ester|zygophloside H|zygophyloside H
2alpha,3beta-dihydroxy-30-norolean-12,20(21)-dien-28-oic acid O-alpha-L-rhamnopyranosyl-(1?4)-O-beta-D-glucopyranosyl-(1?6)-beta-D-glucopyranosyl ester|akemisaponin C
2alpha,3beta-dihydroxy-30-norolean-12,20(29)-dien-28-oic acid O-alpha-L-rhamnopyranosyl-(1?4)-O-beta-D-glucopyranosyl-(1?6)-beta-D-glucopyranosyl ester|akemisaponin J
3-O-beta-D-glucopyranosyl-(1?2)-beta-D-glucuronopyranosyl-22-O-angeloyl-R1-barrigenol
3-O-[beta-D-apiofuranosyl-(1->4)-beta-D-glucuronopyranosyl]oleanolic acid 28-O-beta-D-glucopyranosyl ester
3-O-beta-D-xylopyranosyl-(1-2)-beta-D-glucuronopyranosyl complogenin 22-O-alpha-L-rhamnopyranoside|3-O-beta-D-xylopyranosyl-(1->2)-beta-D-glucuronopyranosyl complogenin 22-O-alpha-L-rhamnopyranoside|GM-14
3beta-[(O-beta-D-glucopyranosyl-(1 -> 3)-alpha-L-arabinopyranosyl)oxy]-27-oxo-olean-12-en-28-oic acid beta-D-glucopyranoside
29-hydroxy-30-norolean-20(21)-enolic acid 28-O-alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranosyl ester|yemuoside YM19
arboreasaponin A|pennogenin 3-O-alpha-L-rhamnopyranosyl-(1->2)-[alpha-L-rhamnopyranosyl-(1->3)]-[6-O-acetyl]-beta-D-glucopyranoside
3-O-[alpha-L-rhamnopyranosyl(1>2)-beta-D-galactopyranosyl-(1>2)-beta-D-glucuronopyranosyl]-soyasapogenol E
Momordin II
Momordin Ii (oleanolic Acid) is a natural product found in Momordica cochinchinensis, Hemsleya macrosperma, and other organisms with data available.
Quinoside D
Quinoside D is a triterpenoid saponin. Momordin IIc (Quinoside D) is a triterpenoid glycoside isolated from Bougainvillea glabra[1].
Oleanolic acid-3-O-glucosyl(1-2)xylyl(1-3)glucosiduronic acid
Oleanolic acid-3-O-glucosyl(1-2)xylyl(1-3)glucosiduronic acid is a nature occurring triterpene saponin[1].
Araloside A
Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1]. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1].
Durupcoside B
Durupcoside A
Cynarasaponin H
Card-20(22)-enolide, 3-[(O-beta-D-glucopyranosyl-(1-->4)-O-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1-->4)-O-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1-->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl)oxy]-14-hydroxy-, (3beta,5beta)-
15,19-Dihydroxy-10-[5-hydroxy-4-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxy-4,5,9,9,13,19,20-heptamethyl-21-oxahexacyclo[18.2.2.01,18.04,17.05,14.08,13]tetracos-17-en-22-one
PI(18:3(6Z,9Z,12Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
PI(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:3(6Z,9Z,12Z))
PI(18:3(9Z,12Z,15Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
PI(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:3(9Z,12Z,15Z))
10-[5-[3,4-Dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-3,4-dihydroxy-6-[4,5,6-trihydroxy-3-(hydroxymethyl)oxan-2-yl]oxycarbonyloxan-2-yl]oxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid
Araloside_A
Chikusetsusaponin-IV is a triterpenoid saponin. It has a role as a metabolite. Araloside A is a natural product found in Kalopanax septemlobus, Bassia muricata, and other organisms with data available. A natural product found in Panax japonicus var. major. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1]. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1].
3,4-dihydroxy-6-{[4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-14-oxo-9-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4a,5,6,7,8,9,10,12,12a,14a-dodecahydro-1h-picen-3-yl]oxy}-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylic acid
(2s,3s,4r,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid
(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6br,8s,8ar,12as,14ar,14br)-8a-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-4-hydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid
10-{[4-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-15,19-dihydroxy-4,5,9,9,13,19,20-heptamethyl-21-oxahexacyclo[18.2.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-17-en-22-one
10-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-2-hydroxy-4,5,9,9,13,20,20-heptamethyl-22-oxahexacyclo[19.2.1.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-16-en-23-one
(1r,4s,5r,8r,10s,13r,14r,16r,19s,20s)-16,19-dihydroxy-10-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5,9,9,13,19,20-heptamethyl-21-oxahexacyclo[18.2.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-17-en-22-one
(2s,3s,4r,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxyoxane-2-carboxylic acid
(1r,3r,5r,6s,7s,8s,10s,11s,13r,14r)-13-{[(3s,4r,4ar,6ar,6bs,8s,8ar,9r,10r,12as,14ar,14br)-8,9-dihydroxy-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-10-{[(2s)-2-methylbutanoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-6,7,8,14-tetrahydroxy-5-(hydroxymethyl)-2,4,9,12-tetraoxatricyclo[8.4.0.0³,⁸]tetradecane-11-carboxylic acid
10-({4,5-dihydroxy-6-methyl-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-1,2,6b,9,9,12a-hexamethyl-4a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
(1r,3ar,3bs,7s,9ar,10s,11s,11as)-1-acetyl-11-(acetyloxy)-7-{[5-({5-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-4-methoxy-2,6-dimethyloxan-2-yl]oxy}-3a,3b-dihydroxy-9a,11a-dimethyl-1h,2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-10-yl acetate
3-o-[β-d-apiofuranosyl-(1→4)-β-d-glucuro-nopyranosyl]oleanolicacid 28-o-β-d-gluco-pyranosyl ester
{"Ingredient_id": "HBIN009134","Ingredient_name": "3-o-[\u03b2-d-apiofuranosyl-(1\u21924)-\u03b2-d-glucuro-nopyranosyl]oleanolicacid 28-o-\u03b2-d-gluco-pyranosyl ester","Alias": "NA","Ingredient_formula": "C47H74O18","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1515","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
aquilegioside i
{"Ingredient_id": "HBIN016555","Ingredient_name": "aquilegioside i","Alias": "NA","Ingredient_formula": "C47H74O18","Ingredient_Smile": "CC1=CCC(OC1=O)C(C)C2C(CC3(C2(CCC45C3CCC6C4(C5)CCC(C6(C)C)OC7C(C(C(CO7)O)O)OC8C(C(C(C(O8)COC9C(C(C(C(O9)CO)O)O)O)O)O)O)C)C)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1550","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
aquilegioside j
{"Ingredient_id": "HBIN016556","Ingredient_name": "aquilegioside j","Alias": "NA","Ingredient_formula": "C47H74O18","Ingredient_Smile": "CC1=CCC(OC1=O)C(C)C2C(CC3(C2(CCC45C3CCC6C4(C5)CCC(C6(C)C)OC7C(C(C(CO7)O)O)OC8C(C(C(C(O8)CO)OC9C(C(C(C(O9)CO)O)O)O)O)O)C)C)O","Ingredient_weight": "927.1 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1551","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "11040285","DrugBank_id": "NA"}