Exact Mass: 916.5370200000001
Exact Mass Matches: 916.5370200000001
Found 291 metabolites which its exact mass value is equals to given mass value 916.5370200000001
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Gynosaponin I
Notoginsenoside Fd is a natural product found in Panax ginseng and Panax notoginseng with data available. Gynosaponin I is found in tea. Gynosaponin I is a constituent of Panax notoginseng (ginseng). Constituent of Panax notoginseng (ginseng). Gynosaponin I is found in tea. Gynostemma Extract (Ginsenoside C-Mx1) is a natural product. Gynostemma Extract (Ginsenoside C-Mx1) is a natural product.
Hoduloside VIII
Hoduloside VIII is a constituent of Hovenia dulcis (raisin tree). Constituent of Hovenia dulcis (raisin tree)
Protopanaxadiol 3-glucoside 20-[arabinosyl-(1->2)-glucoside]
Protopanaxadiol 3-glucoside 20-[arabinosyl-(1->2)-glucoside] is found in tea. Protopanaxadiol 3-glucoside 20-[arabinosyl-(1->2)-glucoside] is a constituent of Panax notoginseng (ginseng)
Notoginsenoside Fe
Notoginsenoside Fe is found in tea. Notoginsenoside Fe is a constituent of leaves of Panax notoginseng (ginseng) Constituent of leaves of Panax notoginseng (ginseng). Notoginsenoside Fe is found in tea. Notoginsenoside Fe is a natural compound isolated from Panax pseudo-ginseng. Notoginsenoside Fe is a natural compound isolated from Panax pseudo-ginseng.
Maduramicin
Anibiotic approved as a feed additive for broiler chickens in the U
PIP(16:0/18:1(11Z))
C43H82O16P2 (916.5077832000001)
PIP(16:0/18:1(11Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(16:0/18:1(11Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the vaccenic acid moiety is derived from butter fat and animal fat. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(16:0/18:1(11Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(16:0/18:1(11Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the vaccenic acid moiety is derived from butter fat and animal fat. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.
PIP[3'](16:0/18:1(9Z))
C43H82O16P2 (916.5077832000001)
PIP(16:0/18:1(9Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.
PIP(18:0/16:1(9Z))
C43H82O16P2 (916.5077832000001)
PIP(18:0/16:1(9Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:0/16:1(9Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(18:0/16:1(9Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:0/16:1(9Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.
PIP(18:1(11Z)/16:0)
C43H82O16P2 (916.5077832000001)
PIP(18:1(11Z)/16:0) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:1(11Z)/16:0), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.
PIP(18:1(9Z)/16:0)
C43H82O16P2 (916.5077832000001)
PIP(18:1(9Z)/16:0) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:1(9Z)/16:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.
Vinaginsenoside R16
Vinaginsenoside R16 is found in tea. Vinaginsenoside R16 is a constituent of Panax vietnamensis (Vietnamese ginseng) Constituent of Panax vietnamensis (Vietnamese ginseng). Vinaginsenoside R16 is found in tea.
Vinaginsenoside R17
Vinaginsenoside R18 is found in tea. Vinaginsenoside R18 is a constituent of Panax vietnamensis (Vietnamese ginseng)
Maduramycin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
PGP(a-17:0/PGF1alpha)
C43H82O16P2 (916.5077832000001)
PGP(a-17:0/PGF1alpha) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-17:0/PGF1alpha), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(PGF1alpha/a-17:0)
C43H82O16P2 (916.5077832000001)
PGP(PGF1alpha/a-17:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGF1alpha/a-17:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(i-17:0/PGF1alpha)
C43H82O16P2 (916.5077832000001)
PGP(i-17:0/PGF1alpha) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-17:0/PGF1alpha), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(PGF1alpha/i-17:0)
C43H82O16P2 (916.5077832000001)
PGP(PGF1alpha/i-17:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGF1alpha/i-17:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(i-20:0/18:1(12Z)-2OH(9,10))
PGP(i-20:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-20:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:1(12Z)-2OH(9,10)/i-20:0)
PGP(18:1(12Z)-2OH(9,10)/i-20:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-2OH(9,10)/i-20:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PI(18:0/PGJ2)
PI(18:0/PGJ2) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:0/PGJ2), in particular, consists of one chain of octadecanoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(PGJ2/18:0)
PI(PGJ2/18:0) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGJ2/18:0), in particular, consists of one chain of Prostaglandin J2 at the C-1 position and one chain of octadecanoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(18:1(11Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
PI(18:1(11Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(11Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of 11Z-octadecenoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:1(11Z))
PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:1(11Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:1(11Z)), in particular, consists of one chain of Leukotriene B4 at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(18:1(11Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
PI(18:1(11Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(11Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of 11Z-octadecenoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:1(11Z))
PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:1(11Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:1(11Z)), in particular, consists of one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(18:1(11Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
PI(18:1(11Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(11Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of 11Z-octadecenoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:1(11Z))
PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:1(11Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:1(11Z)), in particular, consists of one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(18:1(9Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
PI(18:1(9Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(9Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of 9Z-octadecenoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:1(9Z))
PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:1(9Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:1(9Z)), in particular, consists of one chain of Leukotriene B4 at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(18:1(9Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
PI(18:1(9Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(9Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of 9Z-octadecenoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:1(9Z))
PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:1(9Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:1(9Z)), in particular, consists of one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(18:1(9Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
PI(18:1(9Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(9Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of 9Z-octadecenoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:1(9Z))
PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:1(9Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:1(9Z)), in particular, consists of one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(18:2(9Z,12Z)/20:3(8Z,11Z,14Z)-2OH(5,6))
PI(18:2(9Z,12Z)/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:2(9Z,12Z)/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(20:3(8Z,11Z,14Z)-2OH(5,6)/18:2(9Z,12Z))
PI(20:3(8Z,11Z,14Z)-2OH(5,6)/18:2(9Z,12Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:3(8Z,11Z,14Z)-2OH(5,6)/18:2(9Z,12Z)), in particular, consists of one chain of 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(20:4(5Z,8Z,11Z,14Z)/18:1(12Z)-2OH(9,10))
PI(20:4(5Z,8Z,11Z,14Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(5Z,8Z,11Z,14Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(18:1(12Z)-2OH(9,10)/20:4(5Z,8Z,11Z,14Z))
PI(18:1(12Z)-2OH(9,10)/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(12Z)-2OH(9,10)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(20:4(8Z,11Z,14Z,17Z)/18:1(12Z)-2OH(9,10))
PI(20:4(8Z,11Z,14Z,17Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(8Z,11Z,14Z,17Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(18:1(12Z)-2OH(9,10)/20:4(8Z,11Z,14Z,17Z))
PI(18:1(12Z)-2OH(9,10)/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(12Z)-2OH(9,10)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PS(16:1(9Z)/LTE4)
C45H77N2O13PS (916.4883722000001)
PS(16:1(9Z)/LTE4) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(16:1(9Z)/LTE4), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(LTE4/16:1(9Z))
C45H77N2O13PS (916.4883722000001)
PS(LTE4/16:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(LTE4/16:1(9Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PC(16:0/LTE4)
PC(16:0/LTE4) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(16:0/LTE4), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(LTE4/16:0)
PC(LTE4/16:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(LTE4/16:0), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
ginsenoside mb
Notoginsenoside Fe is a triterpenoid. Notoginsenoside Fe is a natural product found in Panax japonicus with data available. Notoginsenoside Fe is a natural compound isolated from Panax pseudo-ginseng. Notoginsenoside Fe is a natural compound isolated from Panax pseudo-ginseng.
Notoginsenoside Ft1
Notoginsenoside Ft1 is a natural product found in Centella asiatica with data available. Notoginsenoside Ft1 is a saponin isolated from Panax notoginseng; stimulator of angiogenesis. IC50 value: Target: angiogenesis stimulator in vitro: Ft1 increases translocalization of hypoxia-inducible factor-1α (HIF-1α) from cytoplasm to nuclei, where it binds to the vascular endothelial growth factor (VEGF) promoter, increasing the expression of VEGF mRNA and the subsequent secretion of the growth factor. Ft1 induces the activation of PI3K/AKT and Raf/MEK/ERK signaling pathways [1]. Among the saponins examined, Ft1 was the most potent procoagulant and induced dose-dependent platelet aggregation. Ft1 reduced plasma coagulation indexes, decreased tail bleeding time and increased thrombogenesis. Moreover, it potentiated ADP-induced platelet aggregation and increased cytosolic Ca(2+) accumulation, effects that were attenuated by clopidogrel. Ft1 binds to platelet P2Y12 receptors. The increase in intracellular Ca(2+) evoked by Ft1 in HEK293 cells overexpressing P2Y12 receptors could be blocked by ticagrelor [2]. Ft1 caused endothelium-dependent relaxations, which were abolished by l-NAME (inhibitor of nitric oxide synthases) and ODQ (inhibitor of soluble guanylyl cyclase). Ft1 increased the cGMP level in rat mesenteric arteries. GR and ER were present in the endothelial layer and their antagonism by RU486 and PHTPP, respectively, inhibited Ft1-induced endothelium-dependent relaxations and phosphorylations of eNOS, Akt and ERK1/2 [3]. Ft1 showed the best inhibitory effect on cell proliferation of SH-SY5Y cells with IC50 of 45μM. Ft1 not only arrested the cell cycle at S, G2/M stages, but also promoted cell apoptosis. Ft1 up-regulated the protein expressions of cleaved caspase 3, phospho-p53, p21, and cyclin B1, but down-regulated that of Bcl-2. Moreover, Ft1 enhanced the phosphorylation of ERK1/2, JNK and p38 MAPK [4]. in vivo: Ft1 promotes the formation of blood vessels in Matrigel plug and wound healing in mice [1]. Notoginsenoside Ft1 is a saponin isolated from Panax notoginseng; stimulator of angiogenesis. IC50 value: Target: angiogenesis stimulator in vitro: Ft1 increases translocalization of hypoxia-inducible factor-1α (HIF-1α) from cytoplasm to nuclei, where it binds to the vascular endothelial growth factor (VEGF) promoter, increasing the expression of VEGF mRNA and the subsequent secretion of the growth factor. Ft1 induces the activation of PI3K/AKT and Raf/MEK/ERK signaling pathways [1]. Among the saponins examined, Ft1 was the most potent procoagulant and induced dose-dependent platelet aggregation. Ft1 reduced plasma coagulation indexes, decreased tail bleeding time and increased thrombogenesis. Moreover, it potentiated ADP-induced platelet aggregation and increased cytosolic Ca(2+) accumulation, effects that were attenuated by clopidogrel. Ft1 binds to platelet P2Y12 receptors. The increase in intracellular Ca(2+) evoked by Ft1 in HEK293 cells overexpressing P2Y12 receptors could be blocked by ticagrelor [2]. Ft1 caused endothelium-dependent relaxations, which were abolished by l-NAME (inhibitor of nitric oxide synthases) and ODQ (inhibitor of soluble guanylyl cyclase). Ft1 increased the cGMP level in rat mesenteric arteries. GR and ER were present in the endothelial layer and their antagonism by RU486 and PHTPP, respectively, inhibited Ft1-induced endothelium-dependent relaxations and phosphorylations of eNOS, Akt and ERK1/2 [3]. Ft1 showed the best inhibitory effect on cell proliferation of SH-SY5Y cells with IC50 of 45μM. Ft1 not only arrested the cell cycle at S, G2/M stages, but also promoted cell apoptosis. Ft1 up-regulated the protein expressions of cleaved caspase 3, phospho-p53, p21, and cyclin B1, but down-regulated that of Bcl-2. Moreover, Ft1 enhanced the phosphorylation of ERK1/2, JNK and p38 MAPK [4]. in vivo: Ft1 promotes the formation of blood vessels in Matrigel plug and wound healing in mice [1]. Notoginsenoside Ft1 is a saponin isolated from Panax notoginseng; stimulator of angiogenesis. IC50 value: Target: angiogenesis stimulator in vitro: Ft1 increases translocalization of hypoxia-inducible factor-1α (HIF-1α) from cytoplasm to nuclei, where it binds to the vascular endothelial growth factor (VEGF) promoter, increasing the expression of VEGF mRNA and the subsequent secretion of the growth factor. Ft1 induces the activation of PI3K/AKT and Raf/MEK/ERK signaling pathways [1]. Among the saponins examined, Ft1 was the most potent procoagulant and induced dose-dependent platelet aggregation. Ft1 reduced plasma coagulation indexes, decreased tail bleeding time and increased thrombogenesis. Moreover, it potentiated ADP-induced platelet aggregation and increased cytosolic Ca(2+) accumulation, effects that were attenuated by clopidogrel. Ft1 binds to platelet P2Y12 receptors. The increase in intracellular Ca(2+) evoked by Ft1 in HEK293 cells overexpressing P2Y12 receptors could be blocked by ticagrelor [2]. Ft1 caused endothelium-dependent relaxations, which were abolished by l-NAME (inhibitor of nitric oxide synthases) and ODQ (inhibitor of soluble guanylyl cyclase). Ft1 increased the cGMP level in rat mesenteric arteries. GR and ER were present in the endothelial layer and their antagonism by RU486 and PHTPP, respectively, inhibited Ft1-induced endothelium-dependent relaxations and phosphorylations of eNOS, Akt and ERK1/2 [3]. Ft1 showed the best inhibitory effect on cell proliferation of SH-SY5Y cells with IC50 of 45μM. Ft1 not only arrested the cell cycle at S, G2/M stages, but also promoted cell apoptosis. Ft1 up-regulated the protein expressions of cleaved caspase 3, phospho-p53, p21, and cyclin B1, but down-regulated that of Bcl-2. Moreover, Ft1 enhanced the phosphorylation of ERK1/2, JNK and p38 MAPK [4]. in vivo: Ft1 promotes the formation of blood vessels in Matrigel plug and wound healing in mice [1].
7,8-dihydroisoxuxuarine Halpha|methyl (3S,4S,8R,9R,9R,13S,13S,14R,14S,17R,17S,18S,18R,20R,20R,22S)-3,22-dihydroxy-2,6,21-trioxo-3,3:2,4-dioxy-29-nordi(friedela)-1(10),1,3,5,5(10),7-hexaen-29-oate
19-oxo-3beta,20S,21-trihydroxy-25-hydroperoxydammar-23(E)-ene 3-O-alpha-L-rhamnopyranosyl(1->2)-[beta-D-xylopyranosyl(1->3)]-alpha-L-arabinopyranoside
(25R)-22-O-methyl-furost-5-en-3beta-,26-diol-3-O-alpha-L-rhamnopyranosyl-(1->2)-[beta-D-glucopyranosyl-(1->3)]-beta-D-glucopyranoside|(25S)-22-O-methyl-furost-5-en-3beta,26-diol 3-O-alpha-L-rhamnopyranosyl-(1->2)[beta-D-glucopyranosyl(1->3)]-beta-D-glucopyranoside|icogenin
3-O-beta-D-glucopyranosyl-2alpha-hydroxydammar-24-en-20(S)-yl O-beta-D-xylopyranosyl-(1->6)-beta-D-glucopyranoside
3-O-[beta-D-glucopyranosyl(1-2)-beta-D-xylopyranosyl]-6-O-beta-D-xylopyranosyl cycloastragenol
7,8-dihydroisoxuxuarine Ialpha|methyl (3S,4S,8R,9R,9R,13S,13S,14R,14S,17S,17R,18R,18S,20R,20R,22S)-3,22-dihydroxy-2,6,21-trioxo-3,3:2,4-dioxy-29-nordi(friedela)-1(10),1,3,5,5(10),7-hexaen-29-oate
(25S)-3beta-hydroxy-22alpha-methoxy-1beta-[(2-O-alpha-L-rhamnopyranosyl-beta-D-fucopyranosyl)oxy]furost-5-en-26-yl beta-D-glucopyranoside
(3beta,6alpha,16beta,20R,24S)-20,24-epoxy-25-(beta-D-glucopyranosyloxy)-6,16-dihydroxy-9,19-cyclolanostan-3-yl 2-O-alpha-L-arabinopyranosyl-beta-D-xylopyranoside|3-O-[alpha-L-arabinopyranosyl-(1->2)-beta-D-xylopyranosyl]-25-O-beta-D-glucopyranosyl-3beta,6alpha,16beta,25-tetrahydroxy-20(R),24(S)-epoxycycloartane
3-(O-beta-D-xylopyranosyl-(1->2)-alpha-L-rhamnopyranosyl)-22-O-beta-D-glucopyranosyl-6alpha,16beta-dihydroxyhopane|lotoideside B
3-O-[alpha-L-arabinopyranosyl-(1->2)-beta-D-xylanopyranosyl]-6-O-beta-D-glucopyranosyl-3beta,6alpha,16beta,24alpha-tetrahydroxy-20(R),25-epoxycycloartane|3-O-[alpha-L-arabinopyranosyl-(1->2)-O-beta-D-xylopyranosyl]-6-O-beta-D-glucopyranosyl-3beta,6alpha,16beta,24alpha-tetrahydroxy-20(R),25-epoxycycloartane|3-O-[alpha-L-arabinopyranosyl-(1?2)-O-beta-D-xylopyranosyl]-6-O-beta-D-glucopyranosyl-3beta,6alpha,16beta,24alpha-tetrahydroxy-20(R),25-epoxycycloartane
3beta-O-[alpha-L-rhamnopyranosyl-(1?2)-beta-L-glucopyranosyl]-15beta-O-(alpha-L-rhamnopyranosyl)-5alpha-cholestan-16beta-yl acetate|acanthifolioside G
(20R,24S)-3-O-[alpha-L-arabinopyranosyl-(1?2)-beta-D-xylopyranosyl]-20,24-epoxy-16-O-beta-D-glucopyranosyl-3beta,6alpha,16beta,25-tetrahydroxycycloartane|(3beta,6alpha,9beta,16beta,20R,24S)-3-{[2-O-(alpha-L-arabinopyrano-syl)-beta-D-xylopyranosyl]oxy}-20,24-epoxy-6,25-dihydroxy-9,19-cyclolanostan-16-yl beta-D-glucopyranoside
curassavosides D|sarcostin 3-O-beta-D-oleandropyranosyl-(1->4)-beta-D-canaropyranosyl-(1->4)-beta-D-canaropyranosyl-(1->4)-beta-D-digitoxopyranoside
lotoidoside A|mollugogenol A 3-O-[alpha-L-rhamnopyranosyl-(1->2)-beta-D-xylopyranosyl]-22-O-beta-D-glucopyranoside
26-O-beta-D-glucopyranosyl-22-O-methyl-5alpha-furost-25(27)-ene-1beta,3alpha,22xi,26-tetrol 1-O-[alpha-L-rhamnopyranosyl-(1->2)-O-beta-D-fucopyranoside]
(20R)-ginsenoside Rg3|(3beta,12beta,20R)-12,20-dihydroxydammar-24-en-3-yl O-beta-D-xylopyranosyl-(1->2)-O-beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside|notoginsenoside Ft1
Notoginsenoside Fe
Notoginsenoside Fe is a natural compound isolated from Panax pseudo-ginseng. Notoginsenoside Fe is a natural compound isolated from Panax pseudo-ginseng.
Gypenoside IX
Gynostemma Extract is a natural product found in Gynostemma pentaphyllum, Panax ginseng, and other organisms with data available. Gynostemma Extract (Ginsenoside C-Mx1) is a natural product. Gynostemma Extract (Ginsenoside C-Mx1) is a natural product.
Ginsenoside Rd2
Ginsenoside Rd2 is a natural product found in Panax ginseng, Centella asiatica, and Aralia elata with data available.
2-[[6-[[17-[5,6-dimethyl-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhept-5-en-2-yl]-1-hydroxy-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-3,4,5-trihydroxyoxan-2-yl]methoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
2-[[6-[[17-[5,6-dimethyl-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhept-5-en-2-yl]-1-hydroxy-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-3,4,5-trihydroxyoxan-2-yl]methoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
PIP[3](16:0/18:1)
C43H82O16P2 (916.5077832000001)
PIP(34:1)
C43H82O16P2 (916.5077832000001)
Cygro
Vinaginsenoside R16
Vinaginsenoside R17
Protopanaxadiol 3-glucoside 20-[arabinosyl-(1->2)-glucoside]
Gynosaponin I
Gynostemma Extract (Ginsenoside C-Mx1) is a natural product. Gynostemma Extract (Ginsenoside C-Mx1) is a natural product.
Hoduloside VIII
22-(Hexopyranosyloxy)-1-hydroxyergosta-5,24-dien-3-yl 6-O-hexopyranosylhexopyranoside
PIP 34:1
C43H82O16P2 (916.5077832000001)
PIP[3'](16:0/18:1(9Z))
C43H82O16P2 (916.5077832000001)
PIP(16:0/18:1(9Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(16:0/18:1(9Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.
Tylosin(1+)
An organic cation that is the conjugate acid of tylosin, obtained by protonation of the tertiary amino group; major species at pH 7.3.
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[1-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate
[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-[[(2R,3S,4R,5S)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol
[6-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[3,4,5-trihydroxy-6-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[6-[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[6-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (6E,8Z,10E,14Z,17Z)-5,12-dihydroxyicosa-6,8,10,14,17-pentaenoate
[1-hexadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-19,20-dihydroxydocosa-4,7,10,13,16-pentaenoate
[1-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-dodecanoyloxy-3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-dodecanoyloxy-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (6E,8E,10E,14E)-5,12-dihydroxyicosa-6,8,10,14-tetraenoate
[(2S,3S,6S)-6-[3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoate
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoate
[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoate
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoate
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[(2S,3S,6S)-6-[3-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[(2S,3S,6S)-6-[3-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[(2S,3S,6S)-6-[3-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C51H80O12S (916.5370200000001)
SQDG(42:9)
C51H80O12S (916.5370200000001)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
(2s,3s,4s,5s,6r)-2-{[(2s)-2-[(1r,3ar,3br,5ar,7s,9ar,9bs,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl]oxy}-6-({[(2s,3s,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2s)-2-[(1s,3ar,3br,5ar,7r,8r,9ar,9br,11ar)-8-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl]oxy}-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6s)-2-{[(1r,3as,3br,5ar,7s,9as,9br,11s,11ar)-1-[(2s)-2-{[(2r,3r,4r,5s,6s)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4r,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-methylhept-5-en-2-yl]-11-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-(hydroxymethyl)-6-(4-{6-methoxy-7,9,13-trimethyl-14,16-bis[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-6-yl}-2-methylbutoxy)oxane-3,4,5-triol
1-(6-hydroperoxy-1,2-dihydroxy-6-methylhept-4-en-2-yl)-7-({5-hydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-3a,3b,6,6-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde
2-({2-[9-({4,5-dihydroxy-6-methyl-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,7-dihydroxy-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl]propan-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol
2-{[1-(2-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-6-methylhept-5-en-2-yl)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[2-(11-hydroxy-3a,3b,6,6-tetramethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-tetradecahydrocyclopenta[a]phenanthren-1-yl)-6-methylhept-5-en-2-yl]oxy}-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxane-3,4,5-triol
3β-o-β-d-glucopyranosyl-20-o-[α-l-arabino-pyranosyl(1→2)-β-d-glucopyranosyl]3β,12β,20(s)-trihydroxydammar-24-ene
{"Ingredient_id": "HBIN008317","Ingredient_name": "3\u03b2-o-\u03b2-d-glucopyranosyl-20-o-[\u03b1-l-arabino-pyranosyl(1\u21922)-\u03b2-d-glucopyranosyl]3\u03b2,12\u03b2,20(s)-trihydroxydammar-24-ene","Alias": "NA","Ingredient_formula": "C47H80O17","Ingredient_Smile": "CC(=CCCC(C)(C1CCC2(C1C(CC3C2(CCC4C3(CCC(C4(C)C)OC5C(C(C(C(O5)CO)O)O)O)C)C)O)C)OC6C(C(C(C(O6)CO)O)O)OC7C(C(C(CO7)O)O)O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT15612","TCMID_id": "8604","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-3-hydroxy-6-{[(1s,2s,4s,6r,7s,8r,9s,12s,13r,16s)-6-[(3r)-4-hydroxy-3-methylbutyl]-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5r)-3,5-dihydroxy-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2r,3r,4s,5s,6r)-2-[(2r)-4-[(1s,2s,4s,6r,7s,8r,9s,12s,13r,16s)-16-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-6-yl]-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2s)-2-[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl]oxy}-6-({[(2r,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxane-3,4,5-triol
[(2r,3s,4s,5r,6s)-6-[(1s)-1-[(2s,5r,7s,8r,9s)-2-[(2s,2'r,3's,5r,5'r)-3'-{[(2s,4s,5r,6s)-4,5-dimethoxy-6-methyloxan-2-yl]oxy}-5'-[(2s,3s,5r,6r)-6-hydroxy-3,5,6-trimethyloxan-2-yl]-2-methyl-[2,2'-bioxolan]-5-yl]-9-hydroxy-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]ethyl]-2-hydroxy-4,5-dimethoxy-3-methyloxan-2-yl]acetic acid
[(2s,3s,4s,5s,6s)-6-[(1s)-1-[(2s,5r,7s,8r,9s)-2-[(2s,2'r,3's,5r,5'r)-3'-{[(2r,4s,5s,6s)-4,5-dimethoxy-6-methyloxan-2-yl]oxy}-5'-[(2s,3s,5s,6s)-6-hydroxy-3,5,6-trimethyloxan-2-yl]-2-methyl-[2,2'-bioxolan]-5-yl]-9-hydroxy-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]ethyl]-2-hydroxy-4,5-dimethoxy-3-methyloxan-2-yl]acetic acid
(1s,3as,3br,5ar,7s,9ar,9br,11ar)-1-[(2s,4e)-2,6-dihydroxy-6-methylhept-4-en-2-yl]-3b,6,6,9a-tetramethyl-3a-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}methyl)-7-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-dodecahydrocyclopenta[a]phenanthren-2-one
2-{[6-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-14-hydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-[(3-hydroxy-6-{[6-(4-hydroxy-3-methylbutyl)-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-4-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
1-[(4e)-2,6-dihydroxy-6-methylhept-4-en-2-yl]-3b,6,6,9a-tetramethyl-3a-{[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]methyl}-7-[(3,4,5-trihydroxyoxan-2-yl)oxy]-dodecahydrocyclopenta[a]phenanthren-2-one
(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5r)-2-{[(3r,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-4,7-dihydroxy-5a,5b,8,8,11a,13b-hexamethyl-3-(2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-[(2s)-4-[(1s,2s,4s,6r,7s,8r,9s,12s,13r,14r,16r)-6-methoxy-7,9,13-trimethyl-16-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-14-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-6-yl]-2-methylbutoxy]oxane-3,4,5-triol
2-({4,5-dihydroxy-6-[(2-{4-hydroxy-5a,5b,8,8,11a,13b-hexamethyl-9-[(3,4,5-trihydroxyoxan-2-yl)oxy]-hexadecahydrocyclopenta[a]chrysen-3-yl}propan-2-yl)oxy]-2-(hydroxymethyl)oxan-3-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol
2-{4-[14-({4,5-dihydroxy-6-methyl-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-16-hydroxy-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-6-yl]-2-methylbutoxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2s)-2-[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl]oxy}-6-({[(2r,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol
2-[(6-{[4,7-dihydroxy-5a,5b,8,8,11a,13b-hexamethyl-3-(2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-4,5-dihydroxyoxan-3-yl)oxy]-6-methyloxane-3,4,5-triol
hydroxy(2-hydroxy-6-{[2-(5'-{6-hydroxy-4-[(5-methoxy-6-methyloxan-2-yl)oxy]-3,5,6-trimethyloxan-2-yl}-[2,2'-bioxolan]-5-yl)-9-methoxy-2,4,10-trimethyl-1,6-dioxaspiro[4.5]decan-7-yl]methyl}-4,5-dimethoxy-3,5-dimethyloxan-2-yl)acetic acid
(1s,3ar,3br,5as,7s,9as,9bs,11ar)-1-[(2s,4e)-6-hydroperoxy-1,2-dihydroxy-6-methylhept-4-en-2-yl]-7-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3a,3b,6,6-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde
(2r,3s,4r,5r,6s)-2-{[(3s,4s,5s,6r)-6-{[(3r,3as,4r,5ar,5br,7r,7as,9r,11as,11bs,13ar,13bs)-4,7-dihydroxy-5a,5b,8,8,11a,13b-hexamethyl-3-(2-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-({2-[(2s,5r)-5-[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-7,7,12,16-tetramethyl-6,9-bis({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy})pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-5-methyloxolan-2-yl]propan-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol
2-{[2-(11-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl)-6-methylhept-5-en-2-yl]oxy}-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-({2-[9a-(hydroxymethyl)-3a,3b,6,6-tetramethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl}oxy)-6-({[(2r,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2s)-2-[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl]oxy}-6-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol
2-{[6-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-14-hydroxy-15-(5-hydroxy-2,6,6-trimethyloxan-2-yl)-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-[(2-{5-[6-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-9,14-dihydroxy-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-5-methyloxolan-2-yl}propan-2-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
2-{[2-(5-{14-hydroxy-7,7,12,16-tetramethyl-6,9-bis[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl}-5-methyloxolan-2-yl)propan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,5r,6s)-6-({2-[(3r,3as,5ar,5br,7as,11ar,11br,13ar,13br)-4-hydroxy-5a,5b,8,8,11a,13b-hexamethyl-9-{[(2r,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-hexadecahydrocyclopenta[a]chrysen-3-yl]propan-2-yl}oxy)-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5r)-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-1-[(2r)-2-hydroxy-6-methylhept-5-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}oxane-3,4,5-triol
(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5r)-4,5-dihydroxy-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16s)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,16-trimethyl-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-({2-[(2s,5r)-5-[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-6-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-9,14-dihydroxy-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-5-methyloxolan-2-yl]propan-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-({2-[(3r,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-9-{[(2r,3r,4r,5r,6s)-4,5-dihydroxy-6-methyl-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,7-dihydroxy-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl]propan-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol
(1'r,2r,4s,4's,5s,8'r,10'e,12's,13's,14'e,16'e,20'r,21'r,24's)-6-cyclohexyl-4,21',24'-trihydroxy-12'-{[(2r,4s,5s,6s)-5-{[(2s,4s,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-5,11',13',22'-tetramethyl-3',7',19'-trioxaspiro[oxane-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraen-2'-one
(2s,3r,4s,5s,6r)-2-{[(2s)-2-[(1s,3ar,3br,5as,7s,9ar,9br,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[(2r,3s,4r,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl]oxy}-6-({[(2r,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxane-3,4,5-triol
2-({2-[(4,5-dihydroxy-2-{[11-hydroxy-1-(2-hydroxy-6-methylhept-5-en-2-yl)-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl}oxy)oxane-3,4,5-triol
1-(2,6-dihydroxy-6-methylhept-4-en-2-yl)-3b,6,6,9a-tetramethyl-3a-{[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]methyl}-7-[(3,4,5-trihydroxyoxan-2-yl)oxy]-dodecahydrocyclopenta[a]phenanthren-2-one
(2r,3s,4r,5r,6s)-2-{[(2s)-2-[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl]oxy}-6-({[(2s,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxane-3,4,5-triol
2-({[(2s)-1-[(2s)-2-[(2s)-2-[(2s)-2-{[(2s,3s)-3-amino-1,2-dihydroxydecylidene]amino}-3-(4-hydroxyphenyl)-n-methylpropanamido]-n,3-dimethylbutanamido]-3-(4-hydroxyphenyl)propanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-3-(4-hydroxyphenyl)propanoic acid
C49H68N6O11 (916.4945818000001)
(2s)-2-({[(2r)-1-[(2s)-2-[(2s)-2-[(2s)-2-{[(2s,3s)-3-amino-1,2-dihydroxydecylidene]amino}-3-(4-hydroxyphenyl)-n-methylpropanamido]-n,3-dimethylbutanamido]-3-(4-hydroxyphenyl)propanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-3-(4-hydroxyphenyl)propanoic acid
C49H68N6O11 (916.4945818000001)
2-({[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-{[2-(11-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl)-6-methylhept-5-en-2-yl]oxy}oxane-3,4,5-triol
2-{[3,5-dihydroxy-2-({14-hydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2s)-2-[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl]oxy}-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol
2-[({1-[2-(2-{2-[(3-amino-1,2-dihydroxydecylidene)amino]-3-(4-hydroxyphenyl)-n-methylpropanamido}-n,3-dimethylbutanamido)-3-(4-hydroxyphenyl)propanoyl]pyrrolidin-2-yl}(hydroxy)methylidene)amino]-3-(4-hydroxyphenyl)propanoic acid
C49H68N6O11 (916.4945818000001)
(2s,3r,4s,5s,6r)-2-{[(2s,4e)-2-[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-4-en-2-yl]oxy}-6-({[(2s,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[2-(11-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl)-6-methylhept-5-en-2-yl]oxy}-6-({[(2r,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol
(2r,3r,4s,5s,6r)-2-[(2r)-4-[(1s,2s,4s,6r,7s,8r,9s,12s,13r,16s)-16-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-6-yl]-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,5r,6s)-6-({2-[(3s,3as,4s,5ar,5br,7as,9s,11ar,11br,13ar,13br)-4-hydroxy-5a,5b,8,8,11a,13b-hexamethyl-9-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-hexadecahydrocyclopenta[a]chrysen-3-yl]propan-2-yl}oxy)-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2r,3r,4s,5s,6r)-2-[(2s)-4-[(1s,2s,4s,6r,7s,8r,9s,12s,13r,14r,16r)-14-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-methyl-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-16-hydroxy-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-6-yl]-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-2-{[(1s,2s,4s,6r,7s,8r,9s,12s,13s,14r,16s,18s)-16-hydroxy-6-methoxy-7,9,13-trimethyl-6-[3-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)but-3-en-1-yl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-14-yl]oxy}-6-methyloxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(2s,3r,4s,5r,6r)-2-{[(2r,3r,4r,5r,6s)-6-({2-[(3r,3as,4s,5ar,5br,7as,9s,11as,11br,13ar,13br)-4-hydroxy-5a,5b,8,8,11a,13b-hexamethyl-9-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-hexadecahydrocyclopenta[a]chrysen-3-yl]propan-2-yl}oxy)-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-{[4,5-dihydroxy-2-({16-hydroxy-6-methoxy-7,9,13-trimethyl-6-[3-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)but-3-en-1-yl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-14-yl}oxy)-6-methyloxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
2-{[2-(8-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl)-6-methylhept-5-en-2-yl]oxy}-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxane-3,4,5-triol
2-{[4,5-dihydroxy-2-({14-hydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,16-trimethyl-9-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
2-[4-(16-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-6-yl)-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-6-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-14-hydroxy-15-[(2r,5s)-5-hydroxy-2,6,6-trimethyloxan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-6-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-[(2-{[4,7-dihydroxy-5a,5b,8,8,11a,13b-hexamethyl-3-(2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-4,5-dihydroxyoxan-3-yl)oxy]-6-methyloxane-3,4,5-triol
(2s)-2-({[(2s)-1-[(2s)-2-[(2s)-2-[(2s)-2-{[(2s,3s)-3-amino-1,2-dihydroxydecylidene]amino}-3-(4-hydroxyphenyl)-n-methylpropanamido]-n,3-dimethylbutanamido]-3-(4-hydroxyphenyl)propanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-3-(4-hydroxyphenyl)propanoic acid
C49H68N6O11 (916.4945818000001)