Notoginsenoside Ft1 (BioDeep_00000230692)

   

PANOMIX_OTCML-2023


代谢物信息卡片


beta-D-Glucopyranoside, (3beta,12beta,20R)-12,20-dihydroxydammar-24-en-3-yl O-beta-D-xylopyranosyl-(1-->2)-O-beta-D-glucopyranosyl-(1-->2)-

化学式: C47H80O17 (916.5395230000001)
中文名称: 三七皂甙 Ft1, 三七皂苷Ft1, Notoginsenoside Ft1, 三七皂苷FT1
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(=CCCC(C)(C1CCC2(C1C(CC3C2(CCC4C3(CCC(C4(C)C)OC5C(C(C(C(O5)CO)O)O)OC6C(C(C(C(O6)CO)O)O)OC7C(C(C(CO7)O)O)O)C)C)O)C)O)C
InChI: InChI=1S/C47H80O17/c1-22(2)10-9-14-47(8,58)23-11-16-46(7)31(23)24(50)18-29-44(5)15-13-30(43(3,4)28(44)12-17-45(29,46)6)62-41-38(35(55)33(53)26(19-48)60-41)64-42-39(36(56)34(54)27(20-49)61-42)63-40-37(57)32(52)25(51)21-59-40/h10,23-42,48-58H,9,11-21H2,1-8H3/t23-,24+,25+,26+,27+,28-,29+,30-,31-,32-,33+,34+,35-,36-,37+,38+,39+,40-,41-,42-,44-,45+,46+,47+/m0/s1

描述信息

Notoginsenoside Ft1 is a natural product found in Centella asiatica with data available.
Notoginsenoside Ft1 is a saponin isolated from Panax notoginseng; stimulator of angiogenesis. IC50 value: Target: angiogenesis stimulator in vitro: Ft1 increases translocalization of hypoxia-inducible factor-1α (HIF-1α) from cytoplasm to nuclei, where it binds to the vascular endothelial growth factor (VEGF) promoter, increasing the expression of VEGF mRNA and the subsequent secretion of the growth factor. Ft1 induces the activation of PI3K/AKT and Raf/MEK/ERK signaling pathways [1]. Among the saponins examined, Ft1 was the most potent procoagulant and induced dose-dependent platelet aggregation. Ft1 reduced plasma coagulation indexes, decreased tail bleeding time and increased thrombogenesis. Moreover, it potentiated ADP-induced platelet aggregation and increased cytosolic Ca(2+) accumulation, effects that were attenuated by clopidogrel. Ft1 binds to platelet P2Y12 receptors. The increase in intracellular Ca(2+) evoked by Ft1 in HEK293 cells overexpressing P2Y12 receptors could be blocked by ticagrelor [2]. Ft1 caused endothelium-dependent relaxations, which were abolished by l-NAME (inhibitor of nitric oxide synthases) and ODQ (inhibitor of soluble guanylyl cyclase). Ft1 increased the cGMP level in rat mesenteric arteries. GR and ER were present in the endothelial layer and their antagonism by RU486 and PHTPP, respectively, inhibited Ft1-induced endothelium-dependent relaxations and phosphorylations of eNOS, Akt and ERK1/2 [3]. Ft1 showed the best inhibitory effect on cell proliferation of SH-SY5Y cells with IC50 of 45μM. Ft1 not only arrested the cell cycle at S, G2/M stages, but also promoted cell apoptosis. Ft1 up-regulated the protein expressions of cleaved caspase 3, phospho-p53, p21, and cyclin B1, but down-regulated that of Bcl-2. Moreover, Ft1 enhanced the phosphorylation of ERK1/2, JNK and p38 MAPK [4]. in vivo: Ft1 promotes the formation of blood vessels in Matrigel plug and wound healing in mice [1].
Notoginsenoside Ft1 is a saponin isolated from Panax notoginseng; stimulator of angiogenesis. IC50 value: Target: angiogenesis stimulator in vitro: Ft1 increases translocalization of hypoxia-inducible factor-1α (HIF-1α) from cytoplasm to nuclei, where it binds to the vascular endothelial growth factor (VEGF) promoter, increasing the expression of VEGF mRNA and the subsequent secretion of the growth factor. Ft1 induces the activation of PI3K/AKT and Raf/MEK/ERK signaling pathways [1]. Among the saponins examined, Ft1 was the most potent procoagulant and induced dose-dependent platelet aggregation. Ft1 reduced plasma coagulation indexes, decreased tail bleeding time and increased thrombogenesis. Moreover, it potentiated ADP-induced platelet aggregation and increased cytosolic Ca(2+) accumulation, effects that were attenuated by clopidogrel. Ft1 binds to platelet P2Y12 receptors. The increase in intracellular Ca(2+) evoked by Ft1 in HEK293 cells overexpressing P2Y12 receptors could be blocked by ticagrelor [2]. Ft1 caused endothelium-dependent relaxations, which were abolished by l-NAME (inhibitor of nitric oxide synthases) and ODQ (inhibitor of soluble guanylyl cyclase). Ft1 increased the cGMP level in rat mesenteric arteries. GR and ER were present in the endothelial layer and their antagonism by RU486 and PHTPP, respectively, inhibited Ft1-induced endothelium-dependent relaxations and phosphorylations of eNOS, Akt and ERK1/2 [3]. Ft1 showed the best inhibitory effect on cell proliferation of SH-SY5Y cells with IC50 of 45μM. Ft1 not only arrested the cell cycle at S, G2/M stages, but also promoted cell apoptosis. Ft1 up-regulated the protein expressions of cleaved caspase 3, phospho-p53, p21, and cyclin B1, but down-regulated that of Bcl-2. Moreover, Ft1 enhanced the phosphorylation of ERK1/2, JNK and p38 MAPK [4]. in vivo: Ft1 promotes the formation of blood vessels in Matrigel plug and wound healing in mice [1].
Notoginsenoside Ft1 is a saponin isolated from Panax notoginseng; stimulator of angiogenesis. IC50 value: Target: angiogenesis stimulator in vitro: Ft1 increases translocalization of hypoxia-inducible factor-1α (HIF-1α) from cytoplasm to nuclei, where it binds to the vascular endothelial growth factor (VEGF) promoter, increasing the expression of VEGF mRNA and the subsequent secretion of the growth factor. Ft1 induces the activation of PI3K/AKT and Raf/MEK/ERK signaling pathways [1]. Among the saponins examined, Ft1 was the most potent procoagulant and induced dose-dependent platelet aggregation. Ft1 reduced plasma coagulation indexes, decreased tail bleeding time and increased thrombogenesis. Moreover, it potentiated ADP-induced platelet aggregation and increased cytosolic Ca(2+) accumulation, effects that were attenuated by clopidogrel. Ft1 binds to platelet P2Y12 receptors. The increase in intracellular Ca(2+) evoked by Ft1 in HEK293 cells overexpressing P2Y12 receptors could be blocked by ticagrelor [2]. Ft1 caused endothelium-dependent relaxations, which were abolished by l-NAME (inhibitor of nitric oxide synthases) and ODQ (inhibitor of soluble guanylyl cyclase). Ft1 increased the cGMP level in rat mesenteric arteries. GR and ER were present in the endothelial layer and their antagonism by RU486 and PHTPP, respectively, inhibited Ft1-induced endothelium-dependent relaxations and phosphorylations of eNOS, Akt and ERK1/2 [3]. Ft1 showed the best inhibitory effect on cell proliferation of SH-SY5Y cells with IC50 of 45μM. Ft1 not only arrested the cell cycle at S, G2/M stages, but also promoted cell apoptosis. Ft1 up-regulated the protein expressions of cleaved caspase 3, phospho-p53, p21, and cyclin B1, but down-regulated that of Bcl-2. Moreover, Ft1 enhanced the phosphorylation of ERK1/2, JNK and p38 MAPK [4]. in vivo: Ft1 promotes the formation of blood vessels in Matrigel plug and wound healing in mice [1].

同义名列表

2 个代谢物同义名

beta-D-Glucopyranoside, (3beta,12beta,20R)-12,20-dihydroxydammar-24-en-3-yl O-beta-D-xylopyranosyl-(1-->2)-O-beta-D-glucopyranosyl-(1-->2)-; Notoginsenoside Ft1



数据库引用编号

4 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Zhengcai Ju, Chunyong He, Jia Li, Li Yang, Zhengtao Wang. A rapid and sensitive ultra-high-pressure liquid chromatography-tandem mass spectrometry method for the determination of notoginsenoside Ft1 in rat plasma with application to pharmacokinetic study. Biomedical chromatography : BMC. 2021 Apr; 35(4):e5042. doi: 10.1002/bmc.5042. [PMID: 33283301]
  • Eryun Zhang, Bo Gao, Li Yang, Xiaojun Wu, Zhengtao Wang. Notoginsenoside Ft1 Promotes Fibroblast Proliferation via PI3K/Akt/mTOR Signaling Pathway and Benefits Wound Healing in Genetically Diabetic Mice. The Journal of pharmacology and experimental therapeutics. 2016 Feb; 356(2):324-32. doi: 10.1124/jpet.115.229369. [PMID: 26567319]
  • Bo Gao, Hai-Lian Shi, Xiang Li, Shui-Ping Qiu, Hui Wu, Bei-Bei Zhang, Xiao-Jun Wu, Zheng-Tao Wang. p38 MAPK and ERK1/2 pathways are involved in the pro-apoptotic effect of notoginsenoside Ft1 on human neuroblastoma SH-SY5Y cells. Life sciences. 2014 Jul; 108(2):63-70. doi: 10.1016/j.lfs.2014.05.010. [PMID: 24857982]
  • Kaikai Shen, Susan W S Leung, Lili Ji, Yu Huang, Maoqi Hou, Aimin Xu, Zhengtao Wang, Paul M Vanhoutte. Notoginsenoside Ft1 activates both glucocorticoid and estrogen receptors to induce endothelium-dependent, nitric oxide-mediated relaxations in rat mesenteric arteries. Biochemical pharmacology. 2014 Mar; 88(1):66-74. doi: 10.1016/j.bcp.2014.01.007. [PMID: 24440742]
  • B Gao, L Huang, H Liu, H Wu, E Zhang, L Yang, X Wu, Z Wang. Platelet P2Y₁₂ receptors are involved in the haemostatic effect of notoginsenoside Ft1, a saponin isolated from Panax notoginseng. British journal of pharmacology. 2014 Jan; 171(1):214-23. doi: 10.1111/bph.12435. [PMID: 24117220]
  • Kaikai Shen, Lili Ji, Chenyuan Gong, Yibo Ma, Li Yang, Yi Fan, Maoqi Hou, Zhengtao Wang. Notoginsenoside Ft1 promotes angiogenesis via HIF-1α mediated VEGF secretion and the regulation of PI3K/AKT and Raf/MEK/ERK signaling pathways. Biochemical pharmacology. 2012 Sep; 84(6):784-92. doi: 10.1016/j.bcp.2012.05.024. [PMID: 22771629]