Exact Mass: 910.4396

Exact Mass Matches: 910.4396

Found 72 metabolites which its exact mass value is equals to given mass value 910.4396, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Betavulgaroside X

6-{[4,4,6a,6b,14b-pentamethyl-11-methylidene-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-3,5-dihydroxy-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylic acid

C46H70O18 (910.4562)


Betavulgaroside X is found in root vegetables. Betavulgaroside X is a constituent of Beta vulgaris (sugar beet) Constituent of Beta vulgaris (sugar beet). Betavulgaroside X is found in root vegetables.

   

A6 Peptide

4-({[1-(1-{2-[(2-{[(1-{6-amino-2-[(1-hydroxyethylidene)amino]hexanoyl}pyrrolidin-2-yl)(hydroxy)methylidene]amino}-1,3-dihydroxypropylidene)amino]-3-hydroxypropanoyl}pyrrolidine-2-carbonyl)pyrrolidin-2-yl](hydroxy)methylidene}amino)-4-{[3-carboxy-1-(C-hydroxycarbonimidoyl)propyl]-C-hydroxycarbonimidoyl}butanoate

C39H62N10O15 (910.4396)


   

PGP(a-17:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(14-methylhexadecanoyl)oxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C43H76O16P2 (910.4608)


PGP(a-17:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-17:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-17:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(14-methylhexadecanoyl)oxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C43H76O16P2 (910.4608)


PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-17:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-17:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-17:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(15-methylhexadecanoyl)oxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C43H76O16P2 (910.4608)


PGP(i-17:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-17:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-17:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(15-methylhexadecanoyl)oxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C43H76O16P2 (910.4608)


PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-17:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-17:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PI(16:2(9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C47H75O15P (910.4843)


PI(16:2(9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:2(9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of 9Z,12Z-hexadecenoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/16:2(9Z,12Z))

[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C47H75O15P (910.4843)


PI(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/16:2(9Z,12Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/16:2(9Z,12Z)), in particular, consists of one chain of Resolvin D5 at the C-1 position and one chain of 9Z,12Z-hexadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(16:2(9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C47H75O15P (910.4843)


PI(16:2(9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:2(9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of 9Z,12Z-hexadecenoyl at the C-1 position and one chain of Protectin DX at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/16:2(9Z,12Z))

[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C47H75O15P (910.4843)


PI(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/16:2(9Z,12Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/16:2(9Z,12Z)), in particular, consists of one chain of Protectin DX at the C-1 position and one chain of 9Z,12Z-hexadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:3(6Z,9Z,12Z)/PGJ2)

[(1R,6R,12Z,15S,19R,20R,21R,22R,23S,24R)-3,20,21,22,23,24-hexahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8,18-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosa-12,16-dien-6-yl]methyl (6Z,9Z,12Z)-octadeca-6,9,12-trienoate

C47H75O15P (910.4843)


PI(18:3(6Z,9Z,12Z)/PGJ2) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:3(6Z,9Z,12Z)/PGJ2), in particular, consists of one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGJ2/18:3(6Z,9Z,12Z))

(1R,6R,13Z,16S,20R,21R,22R,23R,24S,25R)-3,21,22,23,24,25-hexahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9,19-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosa-13,17-dien-6-yl (6Z,9Z,12Z)-octadeca-6,9,12-trienoate

C47H75O15P (910.4843)


PI(PGJ2/18:3(6Z,9Z,12Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGJ2/18:3(6Z,9Z,12Z)), in particular, consists of one chain of Prostaglandin J2 at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:3(9Z,12Z,15Z)/PGJ2)

[(1R,6R,12Z,15S,19R,20R,21R,22R,23S,24R)-3,20,21,22,23,24-hexahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8,18-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosa-12,16-dien-6-yl]methyl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C47H75O15P (910.4843)


PI(18:3(9Z,12Z,15Z)/PGJ2) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:3(9Z,12Z,15Z)/PGJ2), in particular, consists of one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGJ2/18:3(9Z,12Z,15Z))

(1R,6R,13Z,16S,20R,21R,22R,23R,24S,25R)-3,21,22,23,24,25-hexahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9,19-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosa-13,17-dien-6-yl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C47H75O15P (910.4843)


PI(PGJ2/18:3(9Z,12Z,15Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGJ2/18:3(9Z,12Z,15Z)), in particular, consists of one chain of Prostaglandin J2 at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

30-Hydroxymycalolide

30-Hydroxymycalolide A

C47H66N4O14 (910.4575)


   

Cynascyroside C

Cynascyroside C

C46H70O18 (910.4562)


   

Cynascyroside E

Cynascyroside E

C46H70O18 (910.4562)


   
   
   

neoruscogenin 1-O-[O-beta-D-glucopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)-4-O-acetyl-alpha-L-arabinopyranoside]

neoruscogenin 1-O-[O-beta-D-glucopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)-4-O-acetyl-alpha-L-arabinopyranoside]

C46H70O18 (910.4562)


   

(3beta,17alpha)-16,23-dioxo-28-norolean-12-en-3-yl O-beta-D-galactopyranosyl-(1->2)-[O-beta-D-xylopyranosyl-(1->3)]-beta-D-glucopyranosiduronic acid|neogypsoside A

(3beta,17alpha)-16,23-dioxo-28-norolean-12-en-3-yl O-beta-D-galactopyranosyl-(1->2)-[O-beta-D-xylopyranosyl-(1->3)]-beta-D-glucopyranosiduronic acid|neogypsoside A

C46H70O18 (910.4562)


   
   

26-O-beta-D-glucopyranosylfurosta-5,20(22),25(27)-triene-1beta,3beta,26-triol 1-O-alpha-L-rhamnopyranosyl-(1->2)-3-acetyl-alpha-L-arabinopyranoside

26-O-beta-D-glucopyranosylfurosta-5,20(22),25(27)-triene-1beta,3beta,26-triol 1-O-alpha-L-rhamnopyranosyl-(1->2)-3-acetyl-alpha-L-arabinopyranoside

C46H70O18 (910.4562)


   

Betavulgaroside X

6-{[4,4,6a,6b,14b-pentamethyl-11-methylidene-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-3,5-dihydroxy-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylic acid

C46H70O18 (910.4562)


   

LPIM2 17:0

2-O-(alpha-D-Manp)-6-O-(alpha-D-Manp)-(1-heptadecanoyl-sn-glycero-3-phospho-1-myo-inositol)

C38H71O22P (910.4174)


   

PGP(a-17:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PGP(a-17:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C43H76O16P2 (910.4608)


   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-17:0)

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-17:0)

C43H76O16P2 (910.4608)


   

PGP(i-17:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PGP(i-17:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C43H76O16P2 (910.4608)


   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-17:0)

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-17:0)

C43H76O16P2 (910.4608)


   

PI(18:3(6Z,9Z,12Z)/PGJ2)

PI(18:3(6Z,9Z,12Z)/PGJ2)

C47H75O15P (910.4843)


   

PI(PGJ2/18:3(6Z,9Z,12Z))

PI(PGJ2/18:3(6Z,9Z,12Z))

C47H75O15P (910.4843)


   

PI(18:3(9Z,12Z,15Z)/PGJ2)

PI(18:3(9Z,12Z,15Z)/PGJ2)

C47H75O15P (910.4843)


   

PI(PGJ2/18:3(9Z,12Z,15Z))

PI(PGJ2/18:3(9Z,12Z,15Z))

C47H75O15P (910.4843)


   

PI(16:2(9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PI(16:2(9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C47H75O15P (910.4843)


   

PI(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/16:2(9Z,12Z))

PI(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/16:2(9Z,12Z))

C47H75O15P (910.4843)


   

PI(16:2(9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PI(16:2(9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C47H75O15P (910.4843)


   

PI(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/16:2(9Z,12Z))

PI(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/16:2(9Z,12Z))

C47H75O15P (910.4843)


   

[3-[[3-[[3-[(5E,7Z,9Z,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (7E,9E,11Z,13E,15E,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[3-[[3-[[3-[(5E,7Z,9Z,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (7E,9E,11Z,13E,15E,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C45H68O15P2 (910.4033)


   
   

2-O-(alpha-D-Manp)-6-O-(alpha-D-Manp)-(1-heptadecanoyl-sn-glycero-3-phospho-1-myo-inositol)

2-O-(alpha-D-Manp)-6-O-(alpha-D-Manp)-(1-heptadecanoyl-sn-glycero-3-phospho-1-myo-inositol)

C38H71O22P (910.4174)


   
   

PI 18:2/20:6;O2

PI 18:2/20:6;O2

C47H75O15P (910.4843)


   

PI 18:3/20:5;O2

PI 18:3/20:5;O2

C47H75O15P (910.4843)


   

PI 18:4/20:4;O2

PI 18:4/20:4;O2

C47H75O15P (910.4843)


   
   

Angstrom6

Angstrom6

C39H62N10O15 (910.4396)


Angstrom6 (A6 Peptide) is an 8 amino-acid peptide derived from single-chain urokinase plasminogen activator (scuPA) and interferes with the uPA/uPAR cascade and abrogates downstream effects. Angstrom6 binds to CD44 resulting in the inhibition of migration, invasion, and metastasis of tumor cells, and the modulation of CD44-mediated cell signaling[1][2].

   

FSLLRY-NH2 (TFA)

FSLLRY-NH2 (TFA)

C41H61F3N10O10 (910.4524)


FSLLRY-NH2 TFA is a protease-activated receptor 2 (PAR2) inhibitor[1].

   

(1s,3r,4s,5r,6r,8s,10r,11s,12s,13r,15r,17s,29r,30s,31s,33s)-4,5,11,12-tetrahydroxy-6-(hydroxymethyl)-13,31-dimethyl-27-oxo-17-pentyl-30-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,7,9,14,16,28,32-heptaoxatetracyclo[27.3.1.0³,⁸.0¹⁰,¹⁵]tritriacontan-33-yl propanoate

(1s,3r,4s,5r,6r,8s,10r,11s,12s,13r,15r,17s,29r,30s,31s,33s)-4,5,11,12-tetrahydroxy-6-(hydroxymethyl)-13,31-dimethyl-27-oxo-17-pentyl-30-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,7,9,14,16,28,32-heptaoxatetracyclo[27.3.1.0³,⁸.0¹⁰,¹⁵]tritriacontan-33-yl propanoate

C43H74O20 (910.4773)


   

(2r,3r,4r,5s,6s)-6-{[(3s,6ar,6bs,8as,14br)-4,4,6a,6b,14b-pentamethyl-11-methylidene-8a-({[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,5-dihydroxy-4-{[(3s,4r,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2r,3r,4r,5s,6s)-6-{[(3s,6ar,6bs,8as,14br)-4,4,6a,6b,14b-pentamethyl-11-methylidene-8a-({[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,5-dihydroxy-4-{[(3s,4r,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C46H70O18 (910.4562)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-4,4,6a,6b,14b-pentamethyl-11-methylidene-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,5-dihydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-4,4,6a,6b,14b-pentamethyl-11-methylidene-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,5-dihydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C46H70O18 (910.4562)


   

6-hydroxy-7-{[5-({4-hydroxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-4-methoxy-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

6-hydroxy-7-{[5-({4-hydroxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-4-methoxy-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

C46H70O18 (910.4562)


   

4-{[(1r,4s,5r,6s,9s,10s,13r,14r)-6-{[(2s,4r,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9,13-dimethyl-17-oxo-5-(2-oxopropyl)tetracyclo[11.3.1.0¹,¹⁰.0⁴,⁹]heptadecan-14-yl]methyl}-5h-furan-2-one

4-{[(1r,4s,5r,6s,9s,10s,13r,14r)-6-{[(2s,4r,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9,13-dimethyl-17-oxo-5-(2-oxopropyl)tetracyclo[11.3.1.0¹,¹⁰.0⁴,⁹]heptadecan-14-yl]methyl}-5h-furan-2-one

C46H70O18 (910.4562)


   

4,5,11,12-tetrahydroxy-6-(hydroxymethyl)-13,31-dimethyl-27-oxo-17-pentyl-30-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,7,9,14,16,28,32-heptaoxatetracyclo[27.3.1.0³,⁸.0¹⁰,¹⁵]tritriacontan-33-yl propanoate

4,5,11,12-tetrahydroxy-6-(hydroxymethyl)-13,31-dimethyl-27-oxo-17-pentyl-30-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,7,9,14,16,28,32-heptaoxatetracyclo[27.3.1.0³,⁸.0¹⁰,¹⁵]tritriacontan-33-yl propanoate

C43H74O20 (910.4773)


   

(2s,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2r,4r,5s,6s)-4-methoxy-5-{[(2s,4s,5r,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

(2s,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2r,4r,5s,6s)-4-methoxy-5-{[(2s,4s,5r,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

C46H70O18 (910.4562)


   

6-hydroxy-11-{16-hydroxy-10,22-dimethoxy-11,21-dimethyl-12,18-dioxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,13,24,26(29)-octaen-20-yl}-10-methoxy-3,5,9-trimethyl-1-(n-methylformamido)undec-1-en-4-yl acetate

6-hydroxy-11-{16-hydroxy-10,22-dimethoxy-11,21-dimethyl-12,18-dioxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,13,24,26(29)-octaen-20-yl}-10-methoxy-3,5,9-trimethyl-1-(n-methylformamido)undec-1-en-4-yl acetate

C47H66N4O14 (910.4575)


   

6-[(4-formyl-4,6a,6b,11,11,14b-hexamethyl-8-oxo-1,2,3,4a,5,6,7,8a,9,10,12,12a,14,14a-tetradecahydropicen-3-yl)oxy]-3-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylic acid

6-[(4-formyl-4,6a,6b,11,11,14b-hexamethyl-8-oxo-1,2,3,4a,5,6,7,8a,9,10,12,12a,14,14a-tetradecahydropicen-3-yl)oxy]-3-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylic acid

C46H70O18 (910.4562)


   

6-hydroxy-7-{[4-hydroxy-5-({4-methoxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

6-hydroxy-7-{[4-hydroxy-5-({4-methoxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

C46H70O18 (910.4562)


   

(2r,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2r,4r,5s,6s)-5-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

(2r,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2r,4r,5s,6s)-5-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

C46H70O18 (910.4562)


   

(1e,3r,4r,5s,6r,9s,10s)-6-hydroxy-11-[(10s,11r,13e,16s,20s,21r,22s,24e)-16-hydroxy-10,22-dimethoxy-11,21-dimethyl-12,18-dioxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,13,24,26(29)-octaen-20-yl]-10-methoxy-3,5,9-trimethyl-1-(n-methylformamido)undec-1-en-4-yl acetate

(1e,3r,4r,5s,6r,9s,10s)-6-hydroxy-11-[(10s,11r,13e,16s,20s,21r,22s,24e)-16-hydroxy-10,22-dimethoxy-11,21-dimethyl-12,18-dioxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,13,24,26(29)-octaen-20-yl]-10-methoxy-3,5,9-trimethyl-1-(n-methylformamido)undec-1-en-4-yl acetate

C47H66N4O14 (910.4575)


   

(2r,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6s)-4-methoxy-5-{[(2s,4s,5r,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

(2r,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6s)-4-methoxy-5-{[(2s,4s,5r,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

C46H70O18 (910.4562)


   

(1s,3r,4s,5s,6r,8s,10r,11s,12s,13r,15r,17r,29r,30s,31s,33r)-4,5,11,12-tetrahydroxy-6-(hydroxymethyl)-13,31-dimethyl-27-oxo-17-pentyl-30-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,7,9,14,16,28,32-heptaoxatetracyclo[27.3.1.0³,⁸.0¹⁰,¹⁵]tritriacontan-33-yl propanoate

(1s,3r,4s,5s,6r,8s,10r,11s,12s,13r,15r,17r,29r,30s,31s,33r)-4,5,11,12-tetrahydroxy-6-(hydroxymethyl)-13,31-dimethyl-27-oxo-17-pentyl-30-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,7,9,14,16,28,32-heptaoxatetracyclo[27.3.1.0³,⁸.0¹⁰,¹⁵]tritriacontan-33-yl propanoate

C43H74O20 (910.4773)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,12ar,14ar,14br)-4-formyl-4,6a,6b,11,11,14b-hexamethyl-8-oxo-1,2,3,4a,5,6,7,8a,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,12ar,14ar,14br)-4-formyl-4,6a,6b,11,11,14b-hexamethyl-8-oxo-1,2,3,4a,5,6,7,8a,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C46H70O18 (910.4562)


   

(2s,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5r,6r)-5-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

(2s,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5r,6r)-5-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

C46H70O18 (910.4562)


   

(1s,3r,4r,5r,6r,8s,10r,11r,12r,13r,15r,29r,30r,31r,33r)-4,5,11,12-tetrahydroxy-6-(hydroxymethyl)-13,31-dimethyl-27-oxo-17-pentyl-30-{[(2r,3r,4r,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,7,9,14,16,28,32-heptaoxatetracyclo[27.3.1.0³,⁸.0¹⁰,¹⁵]tritriacontan-33-yl propanoate

(1s,3r,4r,5r,6r,8s,10r,11r,12r,13r,15r,29r,30r,31r,33r)-4,5,11,12-tetrahydroxy-6-(hydroxymethyl)-13,31-dimethyl-27-oxo-17-pentyl-30-{[(2r,3r,4r,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,7,9,14,16,28,32-heptaoxatetracyclo[27.3.1.0³,⁸.0¹⁰,¹⁵]tritriacontan-33-yl propanoate

C43H74O20 (910.4773)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8as,12ar,14ar,14br)-4-formyl-4,6a,6b,11,11,14b-hexamethyl-8-oxo-1,2,3,4a,5,6,7,8a,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8as,12ar,14ar,14br)-4-formyl-4,6a,6b,11,11,14b-hexamethyl-8-oxo-1,2,3,4a,5,6,7,8a,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C46H70O18 (910.4562)


   

(1e,3r,4s,5r,6r,9r,10s)-6-hydroxy-11-[(10s,11s,13z,16s,20r,21s,22s,24z)-16-hydroxy-10,22-dimethoxy-11,21-dimethyl-12,18-dioxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,13,24,26(29)-octaen-20-yl]-10-methoxy-3,5,9-trimethyl-1-(n-methylformamido)undec-1-en-4-yl acetate

(1e,3r,4s,5r,6r,9r,10s)-6-hydroxy-11-[(10s,11s,13z,16s,20r,21s,22s,24z)-16-hydroxy-10,22-dimethoxy-11,21-dimethyl-12,18-dioxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,13,24,26(29)-octaen-20-yl]-10-methoxy-3,5,9-trimethyl-1-(n-methylformamido)undec-1-en-4-yl acetate

C47H66N4O14 (910.4575)


   

(6r,7r)-6-hydroxy-7-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2r,4r,5s,6s)-4-methoxy-5-{[(2s,4s,5r,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

(6r,7r)-6-hydroxy-7-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2r,4r,5s,6s)-4-methoxy-5-{[(2s,4s,5r,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

C46H70O18 (910.4562)


   

2-{[(1r,3s,5r,6r,8s,10r,12s,17r,19s,21r,23s,26r,28s,30r,32s,34r,36s,37s,39r,41r,43s,45s,46s,48s,50s)-37-hydroxy-6,16,19,26,28,36,50-heptamethyl-14-oxo-4,9,13,18,22,27,31,35,40,44,47,51-dodecaoxadodecacyclo[26.23.0.0³,²⁶.0⁵,²³.0⁸,²¹.0¹⁰,¹⁹.0¹²,¹⁷.0³⁰,⁵⁰.0³²,⁴⁵.0³⁴,⁴³.0³⁶,⁴¹.0⁴⁶,⁴⁸]henpentacont-15-en-39-yl]methyl}prop-2-enal

2-{[(1r,3s,5r,6r,8s,10r,12s,17r,19s,21r,23s,26r,28s,30r,32s,34r,36s,37s,39r,41r,43s,45s,46s,48s,50s)-37-hydroxy-6,16,19,26,28,36,50-heptamethyl-14-oxo-4,9,13,18,22,27,31,35,40,44,47,51-dodecaoxadodecacyclo[26.23.0.0³,²⁶.0⁵,²³.0⁸,²¹.0¹⁰,¹⁹.0¹²,¹⁷.0³⁰,⁵⁰.0³²,⁴⁵.0³⁴,⁴³.0³⁶,⁴¹.0⁴⁶,⁴⁸]henpentacont-15-en-39-yl]methyl}prop-2-enal

C50H70O15 (910.4714)


   

2-({37-hydroxy-6,16,19,26,28,36,50-heptamethyl-14-oxo-4,9,13,18,22,27,31,35,40,44,47,51-dodecaoxadodecacyclo[26.23.0.0³,²⁶.0⁵,²³.0⁸,²¹.0¹⁰,¹⁹.0¹²,¹⁷.0³⁰,⁵⁰.0³²,⁴⁵.0³⁴,⁴³.0³⁶,⁴¹.0⁴⁶,⁴⁸]henpentacont-15-en-39-yl}methyl)prop-2-enal

2-({37-hydroxy-6,16,19,26,28,36,50-heptamethyl-14-oxo-4,9,13,18,22,27,31,35,40,44,47,51-dodecaoxadodecacyclo[26.23.0.0³,²⁶.0⁵,²³.0⁸,²¹.0¹⁰,¹⁹.0¹²,¹⁷.0³⁰,⁵⁰.0³²,⁴⁵.0³⁴,⁴³.0³⁶,⁴¹.0⁴⁶,⁴⁸]henpentacont-15-en-39-yl}methyl)prop-2-enal

C50H70O15 (910.4714)


   

(2s,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5r,6r)-5-{[(4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

(2s,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5r,6r)-5-{[(4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

C46H70O18 (910.4562)


   

(2r,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5r,6r)-5-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

(2r,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5r,6r)-5-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

C46H70O18 (910.4562)