Exact Mass: 893.2196640000001
Exact Mass Matches: 893.2196640000001
Found 41 metabolites which its exact mass value is equals to given mass value 893.2196640000001
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Octanoyl-CoA
C29H50N7O17P3S (893.2196640000001)
Octanoyl-CoA is a substrate for Trifunctional enzyme beta subunit (mitochondrial), Acyl-coenzyme A oxidase 1 (peroxisomal), 3-ketoacyl-CoA thiolase (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal), Nuclear receptor-binding factor 1, Acyl-CoA dehydrogenase (long-chain specific, mitochondrial), Acyl-coenzyme A oxidase 3 (peroxisomal), HPDHase, Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial), Acyl-coenzyme A oxidase 2 (peroxisomal) and Peroxisomal carnitine O-octanoyltransferase. [HMDB]. Octanoyl-CoA is found in many foods, some of which are millet, loganberry, horseradish, and sea-buckthornberry. Octanoyl-CoA is a substrate for Trifunctional enzyme beta subunit (mitochondrial), Acyl-coenzyme A oxidase 1 (peroxisomal), 3-ketoacyl-CoA thiolase (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal), Nuclear receptor-binding factor 1, Acyl-CoA dehydrogenase (long-chain specific, mitochondrial), Acyl-coenzyme A oxidase 3 (peroxisomal), HPDHase, Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial), Acyl-coenzyme A oxidase 2 (peroxisomal) and Peroxisomal carnitine O-octanoyltransferase.
2-hydroxycyclohexane-1-carbonyl-CoA
C28H46N7O18P3S (893.1832806000001)
An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 2-hydroxycyclohexane-1-carboxylic acid.
3-Hydroxy-5-methylhex-4-enoyl-CoA
C28H46N7O18P3S (893.1832806000001)
This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.
Valproyl-CoA
C29H50N7O17P3S (893.2196640000001)
Valproyl-CoA, a valproate metabolite previously identified in liver, may accumulate in brain as a result of normal fatty acid turnover processes. Valproyl CoA could contribute to valproates antiepileptic activity by stimulating Na+, K+-ATPase activity when brain ATP concentration is low. Valproyl-CoA and to a much lesser extent 3-keto-valproyl-CoA are the main metabolites of VPA in mitochondria. Valproyl-CoA, a valproate metabolite previously identified in liver, may accumulate in brain as a result of normal fatty acid turnover processes. Valproyl CoA could contribute to valproates antiepileptic activity by stimulating Na+, K+-ATPase activity when brain ATP concentration is low.
Valproic acid CoA
C29H50N7O17P3S (893.2196640000001)
Valproic acid CoA is a metabolite of valproic acid. Valproic acid (VPA) is a chemical compound and an acid that has found clinical use as an anticonvulsant and mood-stabilizing drug, primarily in the treatment of epilepsy, bipolar disorder, and, less commonly, major depression. It is also used to treat migraine headaches and schizophrenia. VPA is a liquid at room temperature, but it can be reacted with a base such as sodium hydroxide to form the salt sodium valproate, which is a solid. (Wikipedia)
3-Methylheptanoyl-CoA
C29H50N7O17P3S (893.2196640000001)
3-methylheptanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-methylheptanoic acid thioester of coenzyme A. 3-methylheptanoyl-coa is an acyl-CoA with 7 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-methylheptanoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-methylheptanoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-Methylheptanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-Methylheptanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-Methylheptanoyl-CoA into 3-Methylheptanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-Methylheptanoylcarnitine is converted back to 3-Methylheptanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-Methylheptanoyl-CoA occurs in four steps. First, since 3-Methylheptanoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-Methylheptanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to ...
4-Methylheptanoyl-CoA
C29H50N7O17P3S (893.2196640000001)
4-methylheptanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 4-methylheptanoic acid thioester of coenzyme A. 4-methylheptanoyl-coa is an acyl-CoA with 7 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 4-methylheptanoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 4-methylheptanoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 4-Methylheptanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 4-Methylheptanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 4-Methylheptanoyl-CoA into 4-Methylheptanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 4-Methylheptanoylcarnitine is converted back to 4-Methylheptanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 4-Methylheptanoyl-CoA occurs in four steps. First, since 4-Methylheptanoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 4-Methylheptanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to ...
6-Methylheptanoyl-CoA
C29H50N7O17P3S (893.2196640000001)
6-methylheptanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 6-methylheptanoic acid thioester of coenzyme A. 6-methylheptanoyl-coa is an acyl-CoA with 7 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 6-methylheptanoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 6-methylheptanoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 6-Methylheptanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 6-Methylheptanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 6-Methylheptanoyl-CoA into 6-Methylheptanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 6-Methylheptanoylcarnitine is converted back to 6-Methylheptanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 6-Methylheptanoyl-CoA occurs in four steps. First, since 6-Methylheptanoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 6-Methylheptanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to ...
5-Methylheptanoyl-CoA
C29H50N7O17P3S (893.2196640000001)
5-methylheptanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 5-methylheptanoic acid thioester of coenzyme A. 5-methylheptanoyl-coa is an acyl-CoA with 7 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 5-methylheptanoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 5-methylheptanoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 5-Methylheptanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 5-Methylheptanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 5-Methylheptanoyl-CoA into 5-Methylheptanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 5-Methylheptanoylcarnitine is converted back to 5-Methylheptanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 5-Methylheptanoyl-CoA occurs in four steps. First, since 5-Methylheptanoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 5-Methylheptanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to ...
3-hydroxyhept-4-enoyl-CoA
C28H46N7O18P3S (893.1832806000001)
3-hydroxyhept-4-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-hydroxyhept-4-enoic acid thioester of coenzyme A. 3-hydroxyhept-4-enoyl-coa is an acyl-CoA with 7 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-hydroxyhept-4-enoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-hydroxyhept-4-enoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-hydroxyhept-4-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-hydroxyhept-4-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-hydroxyhept-4-enoyl-CoA into 3-hydroxyhept-4-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-hydroxyhept-4-enoylcarnitine is converted back to 3-hydroxyhept-4-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-hydroxyhept-4-enoyl-CoA occurs in four steps. First, since 3-hydroxyhept-4-enoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-hydroxyhept-4-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydr...
(5E)-3-hydroxyhept-5-enoyl-CoA
C28H46N7O18P3S (893.1832806000001)
(5e)-3-hydroxyhept-5-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (5E)-3-hydroxyhept-5-enoic acid thioester of coenzyme A. (5e)-3-hydroxyhept-5-enoyl-coa is an acyl-CoA with 7 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (5e)-3-hydroxyhept-5-enoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (5e)-3-hydroxyhept-5-enoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (5E)-3-hydroxyhept-5-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (5E)-3-hydroxyhept-5-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (5E)-3-hydroxyhept-5-enoyl-CoA into (5E)-3-hydroxyhept-5-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (5E)-3-hydroxyhept-5-enoylcarnitine is converted back to (5E)-3-hydroxyhept-5-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (5E)-3-hydroxyhept-5-enoyl-CoA occurs in four steps. First, since (5E)-3-hydroxyhept-5-enoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (5E)-3-hydroxyhept-5-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water...
2-hydroxyhept-5-enoyl-CoA
C28H46N7O18P3S (893.1832806000001)
2-hydroxyhept-5-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 2-hydroxyhept-5-enoic acid thioester of coenzyme A. 2-hydroxyhept-5-enoyl-coa is an acyl-CoA with 7 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 2-hydroxyhept-5-enoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 2-hydroxyhept-5-enoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 2-hydroxyhept-5-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 2-hydroxyhept-5-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 2-hydroxyhept-5-enoyl-CoA into 2-hydroxyhept-5-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 2-hydroxyhept-5-enoylcarnitine is converted back to 2-hydroxyhept-5-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 2-hydroxyhept-5-enoyl-CoA occurs in four steps. First, since 2-hydroxyhept-5-enoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 2-hydroxyhept-5-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydr...
2-Hydroxycyclohexanecarbonyl-CoA
C28H46N7O18P3S (893.1832806000001)
4-trimethylammonio-2E-butenoyl-CoA
CoA 7:1;O
C28H46N7O18P3S (893.1832806000001)
CoA 8:0
C29H50N7O17P3S (893.2196640000001)
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 6-methylheptanethioate
C29H50N7O17P3S (893.2196640000001)
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (3S)-3-hydroxycyclohexane-1-carbothioate
C28H46N7O18P3S (893.1832806000001)
S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 6-methylheptanethioate
C29H50N7O17P3S (893.2196640000001)
S-[2-[3-[[4-[[[(2R,3S,4R,5R)-5-(6-Aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 3-hydroxy-5-methylhex-4-enethioate
C28H46N7O18P3S (893.1832806000001)
(3R)-3-hydroxy-(omega-1)-methyl acyl-CoA(4-)
C28H46N7O18P3S-4 (893.1832806000001)
Cyanidin-3-p-hydroxybenzoyl sophoroside-5-glucoside
C40H45O23+ (893.2351520000001)
octanoyl-CoA; (Acyl-CoA); [M+H]+
C29H50N7O17P3S (893.2196640000001)
2,4,4-Trimethylpentanoyl-CoA; (Acyl-CoA); [M+H]+
C29H50N7O17P3S (893.2196640000001)
2-Hydroxycyclohexane-1-carboxyl-CoA
C28H46N7O18P3S (893.1832806000001)
5-Amino-3-Methyl-Pyrrolidine-2-Carboxylic Acid-CoA; (Acyl-CoA); [M+H]+
3-Hydroxy-5-methylhex-4-enoyl-CoA
C28H46N7O18P3S (893.1832806000001)
Octanoyl-CoA
C29H50N7O17P3S (893.2196640000001)
A medium-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of octanoic acid.
(E)-4-(trimethylammonio)but-2-enoyl-CoA
An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (E)-4-(trimethylammonio)but-2-enoic acid.