Exact Mass: 877.4670905999999

Exact Mass Matches: 877.4670905999999

Found 72 metabolites which its exact mass value is equals to given mass value 877.4670905999999, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PA(20:5(5Z,8Z,11Z,14Z,17Z)/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-3-(phosphonooxy)propan-2-yl]oxy}-3-oxopropyl]sulfanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C46H72NO11PS (877.4563452)


PA(20:5(5Z,8Z,11Z,14Z,17Z)/LTE4) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,17Z)/LTE4), in particular, consists of one chain of one 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(LTE4/20:5(5Z,8Z,11Z,14Z,17Z))

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-3-(phosphonooxy)propoxy]-3-oxopropyl]sulfanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C46H72NO11PS (877.4563452)


PA(LTE4/20:5(5Z,8Z,11Z,14Z,17Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(LTE4/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-14:0/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-({[(2S)-2,3-dihydroxypropoxy](hydroxy)phosphoryl}oxy)-3-[(12-methyltridecanoyl)oxy]propan-2-yl]oxy}-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C43H76NO13PS (877.4774735999999)


PG(i-14:0/LTE4) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-14:0/LTE4), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(LTE4/i-14:0)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-3-({[(2S)-2,3-dihydroxypropoxy](hydroxy)phosphoryl}oxy)-2-[(12-methyltridecanoyl)oxy]propoxy]-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C43H76NO13PS (877.4774735999999)


PG(LTE4/i-14:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(LTE4/i-14:0), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:4(5Z,8Z,11Z,14Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

(2S)-2-amino-3-{[hydroxy((2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy)phosphoryl]oxy}propanoic acid

C46H72NO13P (877.4741032)


PS(20:4(5Z,8Z,11Z,14Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(5Z,8Z,11Z,14Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(5Z,8Z,11Z,14Z))

(2S)-2-amino-3-({hydroxy[(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propanoic acid

C46H72NO13P (877.4741032)


PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:4(8Z,11Z,14Z,17Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

(2S)-2-amino-3-{[hydroxy((2R)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy)phosphoryl]oxy}propanoic acid

C46H72NO13P (877.4741032)


PS(20:4(8Z,11Z,14Z,17Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(8Z,11Z,14Z,17Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(8Z,11Z,14Z,17Z))

(2S)-2-amino-3-{[hydroxy((2R)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy)phosphoryl]oxy}propanoic acid

C46H72NO13P (877.4741032)


PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGE2)

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C46H72NO13P (877.4741032)


PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGE2) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGE2), in particular, consists of one chain of one 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(PGE2/20:5(5Z,8Z,11Z,14Z,17Z))

(2S)-2-amino-3-{[hydroxy((2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C46H72NO13P (877.4741032)


PS(PGE2/20:5(5Z,8Z,11Z,14Z,17Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(PGE2/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGD2)

(2S)-2-amino-3-{[hydroxy((2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C46H72NO13P (877.4741032)


PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGD2) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGD2), in particular, consists of one chain of one 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(PGD2/20:5(5Z,8Z,11Z,14Z,17Z))

(2S)-2-amino-3-{[hydroxy((2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C46H72NO13P (877.4741032)


PS(PGD2/20:5(5Z,8Z,11Z,14Z,17Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(PGD2/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

(2S)-2-amino-3-({hydroxy[(2R)-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propanoic acid

C46H72NO13P (877.4741032)


PS(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:5(5Z,8Z,11Z,14Z,17Z))

(2S)-2-amino-3-({hydroxy[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propanoic acid

C46H72NO13P (877.4741032)


PS(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:5(5Z,8Z,11Z,14Z,17Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/5-iso PGF2VI)

(2S)-2-amino-3-({[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C46H72NO13P (877.4741032)


PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/5-iso PGF2VI) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/5-iso PGF2VI), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(5-iso PGF2VI/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2S)-2-amino-3-({[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C46H72NO13P (877.4741032)


PS(5-iso PGF2VI/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(5-iso PGF2VI/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/6 keto-PGF1alpha)

(2-aminoethoxy)[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propoxy]phosphinic acid

C47H76NO12P (877.5104865999999)


PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/6 keto-PGF1alpha) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(6 keto-PGF1alpha/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2-aminoethoxy)[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propoxy]phosphinic acid

C47H76NO12P (877.5104865999999)


PE(6 keto-PGF1alpha/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(6 keto-PGF1alpha/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/TXB2)

(2-aminoethoxy)[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propoxy]phosphinic acid

C47H76NO12P (877.5104865999999)


PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/TXB2) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/TXB2), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(TXB2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2-aminoethoxy)[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propoxy]phosphinic acid

C47H76NO12P (877.5104865999999)


PE(TXB2/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(TXB2/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   
   

tauramamide methyl ester

tauramamide methyl ester

C45H67N9O9 (877.5061492)


   

scytalidamide A

scytalidamide A

C50H67N7O7 (877.5101712000001)


A homodetic cyclic peptide which is a heptapeptide isolated from a marine fungus Scytalidium sp. It exhibits significant cytotoxicity against human colon carcinoma tumour cell line HCT-116.

   
   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/LTE4)

PA(20:5(5Z,8Z,11Z,14Z,17Z)/LTE4)

C46H72NO11PS (877.4563452)


   

PA(LTE4/20:5(5Z,8Z,11Z,14Z,17Z))

PA(LTE4/20:5(5Z,8Z,11Z,14Z,17Z))

C46H72NO11PS (877.4563452)


   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGE2)

PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGE2)

C46H72NO13P (877.4741032)


   

PS(PGE2/20:5(5Z,8Z,11Z,14Z,17Z))

PS(PGE2/20:5(5Z,8Z,11Z,14Z,17Z))

C46H72NO13P (877.4741032)


   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGD2)

PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGD2)

C46H72NO13P (877.4741032)


   

PS(PGD2/20:5(5Z,8Z,11Z,14Z,17Z))

PS(PGD2/20:5(5Z,8Z,11Z,14Z,17Z))

C46H72NO13P (877.4741032)


   

PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/TXB2)

PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/TXB2)

C47H76NO12P (877.5104865999999)


   

PE(TXB2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PE(TXB2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C47H76NO12P (877.5104865999999)


   

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/5-iso PGF2VI)

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/5-iso PGF2VI)

C46H72NO13P (877.4741032)


   

PS(5-iso PGF2VI/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PS(5-iso PGF2VI/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C46H72NO13P (877.4741032)


   

PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/6 keto-PGF1alpha)

PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/6 keto-PGF1alpha)

C47H76NO12P (877.5104865999999)


   

PE(6 keto-PGF1alpha/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PE(6 keto-PGF1alpha/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C47H76NO12P (877.5104865999999)


   

PS(20:4(5Z,8Z,11Z,14Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PS(20:4(5Z,8Z,11Z,14Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C46H72NO13P (877.4741032)


   

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(5Z,8Z,11Z,14Z))

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(5Z,8Z,11Z,14Z))

C46H72NO13P (877.4741032)


   

PS(20:4(8Z,11Z,14Z,17Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PS(20:4(8Z,11Z,14Z,17Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C46H72NO13P (877.4741032)


   

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(8Z,11Z,14Z,17Z))

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(8Z,11Z,14Z,17Z))

C46H72NO13P (877.4741032)


   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PS(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C46H72NO13P (877.4741032)


   

PS(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:5(5Z,8Z,11Z,14Z,17Z))

PS(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:5(5Z,8Z,11Z,14Z,17Z))

C46H72NO13P (877.4741032)


   

(7Z,10Z,13Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]hexadeca-7,10,13-trienamide

(7Z,10Z,13Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]hexadeca-7,10,13-trienamide

C42H71NO18 (877.4670905999999)


   

(4Z,7Z,10Z,13Z)-N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctan-2-yl]hexadeca-4,7,10,13-tetraenamide

(4Z,7Z,10Z,13Z)-N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctan-2-yl]hexadeca-4,7,10,13-tetraenamide

C42H71NO18 (877.4670905999999)


   
   
   
   
   
   

(3s,9s,12s,15s,18s,23as)-9,12,15-tribenzyl-4,7,13,16-tetrahydroxy-2,6,6,11-tetramethyl-3,18-bis(2-methylpropyl)-3h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosane-1,10,19-trione

(3s,9s,12s,15s,18s,23as)-9,12,15-tribenzyl-4,7,13,16-tetrahydroxy-2,6,6,11-tetramethyl-3,18-bis(2-methylpropyl)-3h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosane-1,10,19-trione

C50H67N7O7 (877.5101712000001)


   

3-{[2-({3-carboxy-1,3-dihydroxy-2-[(1-hydroxytetradecylidene)amino]propylidene}amino)-1,3-dihydroxypropylidene]amino}-2-hydroxy-3-{[2-hydroxy-1-({2-hydroxy-1-[(1-hydroxy-2-oxopiperidin-3-yl)-c-hydroxycarbonimidoyl]ethyl}-c-hydroxycarbonimidoyl)propyl]-c-hydroxycarbonimidoyl}propanoic acid

3-{[2-({3-carboxy-1,3-dihydroxy-2-[(1-hydroxytetradecylidene)amino]propylidene}amino)-1,3-dihydroxypropylidene]amino}-2-hydroxy-3-{[2-hydroxy-1-({2-hydroxy-1-[(1-hydroxy-2-oxopiperidin-3-yl)-c-hydroxycarbonimidoyl]ethyl}-c-hydroxycarbonimidoyl)propyl]-c-hydroxycarbonimidoyl}propanoic acid

C37H63N7O17 (877.4280228)


   

n-[(2r,3r,4r,5s,6r)-6-[(acetyloxy)methyl]-4,5-dihydroxy-2-({1-[(18-hydroxy-9-methyloctadecyl)oxy]-3-{[(2r,3r,4s,5r)-3,4,5-tris(acetyloxy)oxan-2-yl]oxy}propan-2-yl}oxy)oxan-3-yl]ethanimidic acid

n-[(2r,3r,4r,5s,6r)-6-[(acetyloxy)methyl]-4,5-dihydroxy-2-({1-[(18-hydroxy-9-methyloctadecyl)oxy]-3-{[(2r,3r,4s,5r)-3,4,5-tris(acetyloxy)oxan-2-yl]oxy}propan-2-yl}oxy)oxan-3-yl]ethanimidic acid

C43H75NO17 (877.5034740000001)


   

28-benzyl-8,11,20,23,26,29-hexahydroxy-22-isopropyl-10-(2-methylpropyl)-25-(sec-butyl)-3,9,12,15,21,24,27,30,33-nonaazatetracyclo[31.3.0.0³,⁷.0¹⁵,¹⁹]hexatriaconta-8,11,20,23,26,29-hexaene-2,14,32-trione

28-benzyl-8,11,20,23,26,29-hexahydroxy-22-isopropyl-10-(2-methylpropyl)-25-(sec-butyl)-3,9,12,15,21,24,27,30,33-nonaazatetracyclo[31.3.0.0³,⁷.0¹⁵,¹⁹]hexatriaconta-8,11,20,23,26,29-hexaene-2,14,32-trione

C45H67N9O9 (877.5061492)


   

n-(1-{[13-benzyl-1,4,11,14-tetrahydroxy-3-(1-hydroxyethyl)-16-(2-methylpropyl)-7,17-dioxo-3h,6h,9h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-10-yl]-c-hydroxycarbonimidoyl}-2-(4-hydroxyphenyl)ethyl)-5-methylhexanimidic acid

n-(1-{[13-benzyl-1,4,11,14-tetrahydroxy-3-(1-hydroxyethyl)-16-(2-methylpropyl)-7,17-dioxo-3h,6h,9h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-10-yl]-c-hydroxycarbonimidoyl}-2-(4-hydroxyphenyl)ethyl)-5-methylhexanimidic acid

C45H63N7O11 (877.4585328000001)


   

(2s)-2-[({3-benzyl-2,5,8,11,14-pentahydroxy-6-[(methyl-c-hydroxycarbonimidoyl)methyl]-9-(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,7,10,13-pentaen-15-yl}-c-hydroxycarbonimidoyl)amino]-5-carbamimidamidopentanoic acid

(2s)-2-[({3-benzyl-2,5,8,11,14-pentahydroxy-6-[(methyl-c-hydroxycarbonimidoyl)methyl]-9-(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,7,10,13-pentaen-15-yl}-c-hydroxycarbonimidoyl)amino]-5-carbamimidamidopentanoic acid

C43H63N11O9 (877.4809988000001)


   

n-{1-[(1-{[1-({1-[(5-carbamimidamido-1-methoxy-1-oxopentan-2-yl)-c-hydroxycarbonimidoyl]-2-(1h-indol-3-yl)ethyl}-c-hydroxycarbonimidoyl)-3-methylbutyl]-c-hydroxycarbonimidoyl}-2-hydroxyethyl)-c-hydroxycarbonimidoyl]-2-(4-hydroxyphenyl)ethyl}-7-methyloctanimidic acid

n-{1-[(1-{[1-({1-[(5-carbamimidamido-1-methoxy-1-oxopentan-2-yl)-c-hydroxycarbonimidoyl]-2-(1h-indol-3-yl)ethyl}-c-hydroxycarbonimidoyl)-3-methylbutyl]-c-hydroxycarbonimidoyl}-2-hydroxyethyl)-c-hydroxycarbonimidoyl]-2-(4-hydroxyphenyl)ethyl}-7-methyloctanimidic acid

C45H67N9O9 (877.5061492)


   

(1s,7s,10s,19s,22s,25s,28s)-28-benzyl-25-[(2s)-butan-2-yl]-8,11,20,23,26,29-hexahydroxy-22-isopropyl-10-(2-methylpropyl)-3,9,12,15,21,24,27,30,33-nonaazatetracyclo[31.3.0.0³,⁷.0¹⁵,¹⁹]hexatriaconta-8,11,20,23,26,29-hexaene-2,14,32-trione

(1s,7s,10s,19s,22s,25s,28s)-28-benzyl-25-[(2s)-butan-2-yl]-8,11,20,23,26,29-hexahydroxy-22-isopropyl-10-(2-methylpropyl)-3,9,12,15,21,24,27,30,33-nonaazatetracyclo[31.3.0.0³,⁷.0¹⁵,¹⁹]hexatriaconta-8,11,20,23,26,29-hexaene-2,14,32-trione

C45H67N9O9 (877.5061492)


   

n-[(1r)-1-{[(1s)-1-{[(1r)-1-{[(1s)-1-{[(2s)-5-carbamimidamido-1-methoxy-1-oxopentan-2-yl]-c-hydroxycarbonimidoyl}-2-(1h-indol-3-yl)ethyl]-c-hydroxycarbonimidoyl}-3-methylbutyl]-c-hydroxycarbonimidoyl}-2-hydroxyethyl]-c-hydroxycarbonimidoyl}-2-(4-hydroxyphenyl)ethyl]-7-methyloctanimidic acid

n-[(1r)-1-{[(1s)-1-{[(1r)-1-{[(1s)-1-{[(2s)-5-carbamimidamido-1-methoxy-1-oxopentan-2-yl]-c-hydroxycarbonimidoyl}-2-(1h-indol-3-yl)ethyl]-c-hydroxycarbonimidoyl}-3-methylbutyl]-c-hydroxycarbonimidoyl}-2-hydroxyethyl]-c-hydroxycarbonimidoyl}-2-(4-hydroxyphenyl)ethyl]-7-methyloctanimidic acid

C45H67N9O9 (877.5061492)


   

n-{2-hydroxy-1-[({[1-({5,8,11-trihydroxy-3,6-bis[2-(c-hydroxycarbonimidoyl)ethyl]-9-(3h-imidazol-4-ylmethyl)-2-oxo-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-12-yl}-c-hydroxycarbonimidoyl)ethyl]-c-hydroxycarbonimidoyl}methyl)-c-hydroxycarbonimidoyl]propyl}-9-methyldecanimidic acid

n-{2-hydroxy-1-[({[1-({5,8,11-trihydroxy-3,6-bis[2-(c-hydroxycarbonimidoyl)ethyl]-9-(3h-imidazol-4-ylmethyl)-2-oxo-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-12-yl}-c-hydroxycarbonimidoyl)ethyl]-c-hydroxycarbonimidoyl}methyl)-c-hydroxycarbonimidoyl]propyl}-9-methyldecanimidic acid

C39H63N11O12 (877.4657438)


   

n-[(1s)-1-{[(3r,10r,13s,16r,21as)-13-benzyl-1,4,11,14-tetrahydroxy-3-[(1s)-1-hydroxyethyl]-16-(2-methylpropyl)-7,17-dioxo-3h,6h,9h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-10-yl]-c-hydroxycarbonimidoyl}-2-(4-hydroxyphenyl)ethyl]-5-methylhexanimidic acid

n-[(1s)-1-{[(3r,10r,13s,16r,21as)-13-benzyl-1,4,11,14-tetrahydroxy-3-[(1s)-1-hydroxyethyl]-16-(2-methylpropyl)-7,17-dioxo-3h,6h,9h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-10-yl]-c-hydroxycarbonimidoyl}-2-(4-hydroxyphenyl)ethyl]-5-methylhexanimidic acid

C45H63N7O11 (877.4585328000001)


   

6-amino-2-[({3-benzyl-4-ethyl-2,8,11,14-tetrahydroxy-6-[(methyl-c-hydroxycarbonimidoyl)methyl]-5-oxo-9-(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,7,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]hexanoic acid

6-amino-2-[({3-benzyl-4-ethyl-2,8,11,14-tetrahydroxy-6-[(methyl-c-hydroxycarbonimidoyl)methyl]-5-oxo-9-(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,7,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]hexanoic acid

C45H67N9O9 (877.5061492)


   

(1s,7s,10s,19s,22s,25s,28s)-28-benzyl-10,25-bis[(2s)-butan-2-yl]-8,11,20,23,26,29-hexahydroxy-22-isopropyl-3,9,12,15,21,24,27,30,33-nonaazatetracyclo[31.3.0.0³,⁷.0¹⁵,¹⁹]hexatriaconta-8,11,20,23,26,29-hexaene-2,14,32-trione

(1s,7s,10s,19s,22s,25s,28s)-28-benzyl-10,25-bis[(2s)-butan-2-yl]-8,11,20,23,26,29-hexahydroxy-22-isopropyl-3,9,12,15,21,24,27,30,33-nonaazatetracyclo[31.3.0.0³,⁷.0¹⁵,¹⁹]hexatriaconta-8,11,20,23,26,29-hexaene-2,14,32-trione

C45H67N9O9 (877.5061492)


   

9,12,15-tribenzyl-4,7,13,16-tetrahydroxy-2,6,6,11-tetramethyl-3,18-bis(2-methylpropyl)-3h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosane-1,10,19-trione

9,12,15-tribenzyl-4,7,13,16-tetrahydroxy-2,6,6,11-tetramethyl-3,18-bis(2-methylpropyl)-3h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosane-1,10,19-trione

C50H67N7O7 (877.5101712000001)


   

3-{[(2s)-2-({3-carboxy-1,3-dihydroxy-2-[(1-hydroxytetradecylidene)amino]propylidene}amino)-1,3-dihydroxypropylidene]amino}-2-hydroxy-3-{[(1r,2s)-2-hydroxy-1-{[(1s)-2-hydroxy-1-{[(3s)-1-hydroxy-2-oxopiperidin-3-yl]-c-hydroxycarbonimidoyl}ethyl]-c-hydroxycarbonimidoyl}propyl]-c-hydroxycarbonimidoyl}propanoic acid

3-{[(2s)-2-({3-carboxy-1,3-dihydroxy-2-[(1-hydroxytetradecylidene)amino]propylidene}amino)-1,3-dihydroxypropylidene]amino}-2-hydroxy-3-{[(1r,2s)-2-hydroxy-1-{[(1s)-2-hydroxy-1-{[(3s)-1-hydroxy-2-oxopiperidin-3-yl]-c-hydroxycarbonimidoyl}ethyl]-c-hydroxycarbonimidoyl}propyl]-c-hydroxycarbonimidoyl}propanoic acid

C37H63N7O17 (877.4280228)


   

n-[(1s,2r)-2-hydroxy-1-[({[(1s)-1-{[(3s,6s,9s,12s)-5,8,11-trihydroxy-3,6-bis[2-(c-hydroxycarbonimidoyl)ethyl]-9-(3h-imidazol-4-ylmethyl)-2-oxo-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-12-yl]-c-hydroxycarbonimidoyl}ethyl]-c-hydroxycarbonimidoyl}methyl)-c-hydroxycarbonimidoyl]propyl]-9-methyldecanimidic acid

n-[(1s,2r)-2-hydroxy-1-[({[(1s)-1-{[(3s,6s,9s,12s)-5,8,11-trihydroxy-3,6-bis[2-(c-hydroxycarbonimidoyl)ethyl]-9-(3h-imidazol-4-ylmethyl)-2-oxo-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-12-yl]-c-hydroxycarbonimidoyl}ethyl]-c-hydroxycarbonimidoyl}methyl)-c-hydroxycarbonimidoyl]propyl]-9-methyldecanimidic acid

C39H63N11O12 (877.4657438)


   

n-{2-hydroxy-1-[({[1-({5,8,11-trihydroxy-3,6-bis[2-(c-hydroxycarbonimidoyl)ethyl]-9-(1h-imidazol-2-ylmethyl)-2-oxo-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-12-yl}-c-hydroxycarbonimidoyl)ethyl]-c-hydroxycarbonimidoyl}methyl)-c-hydroxycarbonimidoyl]propyl}-9-methyldecanimidic acid

n-{2-hydroxy-1-[({[1-({5,8,11-trihydroxy-3,6-bis[2-(c-hydroxycarbonimidoyl)ethyl]-9-(1h-imidazol-2-ylmethyl)-2-oxo-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-12-yl}-c-hydroxycarbonimidoyl)ethyl]-c-hydroxycarbonimidoyl}methyl)-c-hydroxycarbonimidoyl]propyl}-9-methyldecanimidic acid

C39H63N11O12 (877.4657438)


   

n-[(1s)-1-{[(3s,10r,13s,16r,21as)-13-benzyl-1,4,11,14-tetrahydroxy-3-[(1r)-1-hydroxyethyl]-16-(2-methylpropyl)-7,17-dioxo-3h,6h,9h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-10-yl]-c-hydroxycarbonimidoyl}-2-(4-hydroxyphenyl)ethyl]-5-methylhexanimidic acid

n-[(1s)-1-{[(3s,10r,13s,16r,21as)-13-benzyl-1,4,11,14-tetrahydroxy-3-[(1r)-1-hydroxyethyl]-16-(2-methylpropyl)-7,17-dioxo-3h,6h,9h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-10-yl]-c-hydroxycarbonimidoyl}-2-(4-hydroxyphenyl)ethyl]-5-methylhexanimidic acid

C45H63N7O11 (877.4585328000001)