Exact Mass: 877.4670905999999

Exact Mass Matches: 877.4670905999999

Found 38 metabolites which its exact mass value is equals to given mass value 877.4670905999999, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PS(20:4(5Z,8Z,11Z,14Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

(2S)-2-amino-3-{[hydroxy((2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy)phosphoryl]oxy}propanoic acid

C46H72NO13P (877.4741032)


PS(20:4(5Z,8Z,11Z,14Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(5Z,8Z,11Z,14Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(5Z,8Z,11Z,14Z))

(2S)-2-amino-3-({hydroxy[(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propanoic acid

C46H72NO13P (877.4741032)


PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:4(8Z,11Z,14Z,17Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

(2S)-2-amino-3-{[hydroxy((2R)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy)phosphoryl]oxy}propanoic acid

C46H72NO13P (877.4741032)


PS(20:4(8Z,11Z,14Z,17Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(8Z,11Z,14Z,17Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(8Z,11Z,14Z,17Z))

(2S)-2-amino-3-{[hydroxy((2R)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy)phosphoryl]oxy}propanoic acid

C46H72NO13P (877.4741032)


PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGE2)

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C46H72NO13P (877.4741032)


PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGE2) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGE2), in particular, consists of one chain of one 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(PGE2/20:5(5Z,8Z,11Z,14Z,17Z))

(2S)-2-amino-3-{[hydroxy((2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C46H72NO13P (877.4741032)


PS(PGE2/20:5(5Z,8Z,11Z,14Z,17Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(PGE2/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGD2)

(2S)-2-amino-3-{[hydroxy((2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C46H72NO13P (877.4741032)


PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGD2) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGD2), in particular, consists of one chain of one 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(PGD2/20:5(5Z,8Z,11Z,14Z,17Z))

(2S)-2-amino-3-{[hydroxy((2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C46H72NO13P (877.4741032)


PS(PGD2/20:5(5Z,8Z,11Z,14Z,17Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(PGD2/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

(2S)-2-amino-3-({hydroxy[(2R)-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propanoic acid

C46H72NO13P (877.4741032)


PS(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:5(5Z,8Z,11Z,14Z,17Z))

(2S)-2-amino-3-({hydroxy[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propanoic acid

C46H72NO13P (877.4741032)


PS(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:5(5Z,8Z,11Z,14Z,17Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/5-iso PGF2VI)

(2S)-2-amino-3-({[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C46H72NO13P (877.4741032)


PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/5-iso PGF2VI) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/5-iso PGF2VI), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(5-iso PGF2VI/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2S)-2-amino-3-({[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C46H72NO13P (877.4741032)


PS(5-iso PGF2VI/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(5-iso PGF2VI/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGE2)

PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGE2)

C46H72NO13P (877.4741032)


   

PS(PGE2/20:5(5Z,8Z,11Z,14Z,17Z))

PS(PGE2/20:5(5Z,8Z,11Z,14Z,17Z))

C46H72NO13P (877.4741032)


   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGD2)

PS(20:5(5Z,8Z,11Z,14Z,17Z)/PGD2)

C46H72NO13P (877.4741032)


   

PS(PGD2/20:5(5Z,8Z,11Z,14Z,17Z))

PS(PGD2/20:5(5Z,8Z,11Z,14Z,17Z))

C46H72NO13P (877.4741032)


   

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/5-iso PGF2VI)

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/5-iso PGF2VI)

C46H72NO13P (877.4741032)


   

PS(5-iso PGF2VI/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PS(5-iso PGF2VI/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C46H72NO13P (877.4741032)


   

PS(20:4(5Z,8Z,11Z,14Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PS(20:4(5Z,8Z,11Z,14Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C46H72NO13P (877.4741032)


   

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(5Z,8Z,11Z,14Z))

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(5Z,8Z,11Z,14Z))

C46H72NO13P (877.4741032)


   

PS(20:4(8Z,11Z,14Z,17Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PS(20:4(8Z,11Z,14Z,17Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C46H72NO13P (877.4741032)


   

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(8Z,11Z,14Z,17Z))

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:4(8Z,11Z,14Z,17Z))

C46H72NO13P (877.4741032)


   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PS(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C46H72NO13P (877.4741032)


   

PS(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:5(5Z,8Z,11Z,14Z,17Z))

PS(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:5(5Z,8Z,11Z,14Z,17Z))

C46H72NO13P (877.4741032)


   

(7Z,10Z,13Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]hexadeca-7,10,13-trienamide

(7Z,10Z,13Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]hexadeca-7,10,13-trienamide

C42H71NO18 (877.4670905999999)


   

(4Z,7Z,10Z,13Z)-N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctan-2-yl]hexadeca-4,7,10,13-tetraenamide

(4Z,7Z,10Z,13Z)-N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctan-2-yl]hexadeca-4,7,10,13-tetraenamide

C42H71NO18 (877.4670905999999)


   
   
   
   
   

n-(1-{[13-benzyl-1,4,11,14-tetrahydroxy-3-(1-hydroxyethyl)-16-(2-methylpropyl)-7,17-dioxo-3h,6h,9h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-10-yl]-c-hydroxycarbonimidoyl}-2-(4-hydroxyphenyl)ethyl)-5-methylhexanimidic acid

n-(1-{[13-benzyl-1,4,11,14-tetrahydroxy-3-(1-hydroxyethyl)-16-(2-methylpropyl)-7,17-dioxo-3h,6h,9h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-10-yl]-c-hydroxycarbonimidoyl}-2-(4-hydroxyphenyl)ethyl)-5-methylhexanimidic acid

C45H63N7O11 (877.4585328000001)


   

n-{2-hydroxy-1-[({[1-({5,8,11-trihydroxy-3,6-bis[2-(c-hydroxycarbonimidoyl)ethyl]-9-(3h-imidazol-4-ylmethyl)-2-oxo-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-12-yl}-c-hydroxycarbonimidoyl)ethyl]-c-hydroxycarbonimidoyl}methyl)-c-hydroxycarbonimidoyl]propyl}-9-methyldecanimidic acid

n-{2-hydroxy-1-[({[1-({5,8,11-trihydroxy-3,6-bis[2-(c-hydroxycarbonimidoyl)ethyl]-9-(3h-imidazol-4-ylmethyl)-2-oxo-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-12-yl}-c-hydroxycarbonimidoyl)ethyl]-c-hydroxycarbonimidoyl}methyl)-c-hydroxycarbonimidoyl]propyl}-9-methyldecanimidic acid

C39H63N11O12 (877.4657438)


   

n-[(1s)-1-{[(3r,10r,13s,16r,21as)-13-benzyl-1,4,11,14-tetrahydroxy-3-[(1s)-1-hydroxyethyl]-16-(2-methylpropyl)-7,17-dioxo-3h,6h,9h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-10-yl]-c-hydroxycarbonimidoyl}-2-(4-hydroxyphenyl)ethyl]-5-methylhexanimidic acid

n-[(1s)-1-{[(3r,10r,13s,16r,21as)-13-benzyl-1,4,11,14-tetrahydroxy-3-[(1s)-1-hydroxyethyl]-16-(2-methylpropyl)-7,17-dioxo-3h,6h,9h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-10-yl]-c-hydroxycarbonimidoyl}-2-(4-hydroxyphenyl)ethyl]-5-methylhexanimidic acid

C45H63N7O11 (877.4585328000001)


   

n-[(1s,2r)-2-hydroxy-1-[({[(1s)-1-{[(3s,6s,9s,12s)-5,8,11-trihydroxy-3,6-bis[2-(c-hydroxycarbonimidoyl)ethyl]-9-(3h-imidazol-4-ylmethyl)-2-oxo-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-12-yl]-c-hydroxycarbonimidoyl}ethyl]-c-hydroxycarbonimidoyl}methyl)-c-hydroxycarbonimidoyl]propyl]-9-methyldecanimidic acid

n-[(1s,2r)-2-hydroxy-1-[({[(1s)-1-{[(3s,6s,9s,12s)-5,8,11-trihydroxy-3,6-bis[2-(c-hydroxycarbonimidoyl)ethyl]-9-(3h-imidazol-4-ylmethyl)-2-oxo-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-12-yl]-c-hydroxycarbonimidoyl}ethyl]-c-hydroxycarbonimidoyl}methyl)-c-hydroxycarbonimidoyl]propyl]-9-methyldecanimidic acid

C39H63N11O12 (877.4657438)


   

n-{2-hydroxy-1-[({[1-({5,8,11-trihydroxy-3,6-bis[2-(c-hydroxycarbonimidoyl)ethyl]-9-(1h-imidazol-2-ylmethyl)-2-oxo-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-12-yl}-c-hydroxycarbonimidoyl)ethyl]-c-hydroxycarbonimidoyl}methyl)-c-hydroxycarbonimidoyl]propyl}-9-methyldecanimidic acid

n-{2-hydroxy-1-[({[1-({5,8,11-trihydroxy-3,6-bis[2-(c-hydroxycarbonimidoyl)ethyl]-9-(1h-imidazol-2-ylmethyl)-2-oxo-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-12-yl}-c-hydroxycarbonimidoyl)ethyl]-c-hydroxycarbonimidoyl}methyl)-c-hydroxycarbonimidoyl]propyl}-9-methyldecanimidic acid

C39H63N11O12 (877.4657438)


   

n-[(1s)-1-{[(3s,10r,13s,16r,21as)-13-benzyl-1,4,11,14-tetrahydroxy-3-[(1r)-1-hydroxyethyl]-16-(2-methylpropyl)-7,17-dioxo-3h,6h,9h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-10-yl]-c-hydroxycarbonimidoyl}-2-(4-hydroxyphenyl)ethyl]-5-methylhexanimidic acid

n-[(1s)-1-{[(3s,10r,13s,16r,21as)-13-benzyl-1,4,11,14-tetrahydroxy-3-[(1r)-1-hydroxyethyl]-16-(2-methylpropyl)-7,17-dioxo-3h,6h,9h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-10-yl]-c-hydroxycarbonimidoyl}-2-(4-hydroxyphenyl)ethyl]-5-methylhexanimidic acid

C45H63N7O11 (877.4585328000001)