Exact Mass: 865.152

Exact Mass Matches: 865.152

Found 35 metabolites which its exact mass value is equals to given mass value 865.152, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

2-Methylacetoacetyl-CoA

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-{2-[(2-{[(2S)-2-methyl-3-oxobutanoyl]sulphanyl}ethyl)-C-hydroxycarbonimidoyl]ethyl}butanimidic acid

C26H42N7O18P3S (865.152)


2-Methylacetoacetyl-CoA belongs to the class of organic compounds known as 3-oxo-acyl CoAs. These are organic compounds containing a 3-oxo acylated coenzyme A derivative. 2-Methylacetoacetyl-CoA is a substrate for 3-hydroxyacyl-CoA dehydrogenase type II, 3-ketoacyl-CoA thiolase (mitochondrial), peroxisomal bifunctional enzyme, trifunctional enzyme beta subunit (mitochondrial), short chain 3-hydroxyacyl-CoA dehydrogenase (mitochondrial), and 3-ketoacyl-CoA thiolase (peroxisomal). 2-Methylacetoacetyl-CoA is a substrate for 3-hydroxyacyl-CoA dehydrogenase type II, 3-ketoacyl-CoA thiolase (mitochondrial), Peroxisomal bifunctional enzyme, Trifunctional enzyme beta subunit (mitochondrial), Short chain 3-hydroxyacyl-CoA dehydrogenase (mitochondrial) and 3-ketoacyl-CoA thiolase (peroxisomal). [HMDB]. 2-Methylacetoacetyl-CoA is found in many foods, some of which are spirulina, macadamia nut (m. tetraphylla), root vegetables, and yardlong bean.

   

Hexanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-[(2-{[2-(hexanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C27H46N7O17P3S (865.1884)


Hexanoyl-CoA, also known as hexanoyl-coenzyme A or caproyl-CoA, is a medium-chain fatty acyl-CoA having hexanoyl as the acyl group. Hexanoyl-CoA is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Within the cell, hexanoyl-CoA is primarily located in the membrane (predicted from logP). It can also be found in the extracellular space. Hexanoyl-CoA exists in all living organisms, ranging from bacteria to humans. In humans, hexanoyl-CoA is involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. Hexanoyl-CoA is also involved in few metabolic disorders, such as fatty acid elongation in mitochondria, mitochondrial beta-oxidation of medium chain saturated fatty acids, and mitochondrial beta-oxidation of short chain saturated fatty acids. Fatty acid coenzyme A derivative that can be involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. [HMDB]

   

isocaproyl-CoA

4-Methyl Valeric Acid-CoA; (Acyl-CoA); [M+H]+;

C27H46N7O17P3S (865.1884)


A methyl-branched fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 4-methylpentanoic acid.

   

R-hexanoyl CoA

(2R)-4-({[({[(2R,3R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-(2-{[2-(hexanoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)-2-hydroxy-3,3-dimethylbutanimidic acid

C27H46N7O17P3S (865.1884)


R-hexanoyl CoA is classified as a member of the 2,3,4-saturated fatty acyl CoAs. 2,3,4-saturated fatty acyl CoAs are acyl-CoAs carrying a 2,3,4-saturated fatty acyl chain. R-hexanoyl CoA is considered to be slightly soluble (in water) and acidic. R-hexanoyl CoA is a fatty ester lipid molecule

   

4-Methylpentanoyl-CoA

{[5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(4-methylpentanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C27H46N7O17P3S (865.1884)


4-methylpentanoyl-coa, also known as 4-methyl valerate-coa; (acyl-CoA); [m+h]+; is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 4-methylpentanoic acid thioester of coenzyme A. 4-methylpentanoyl-coa is an acyl-CoA with 5 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 4-methylpentanoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 4-methylpentanoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 4-Methylpentanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 4-Methylpentanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 4-Methylpentanoyl-CoA into 4-Methylpentanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 4-Methylpentanoylcarnitine is converted back to 4-Methylpentanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 4-Methylpentanoyl-CoA occurs in four steps. First, since 4-Methylpentanoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 4-Methylpentanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hy...

   

3-Methylpentanoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-[2-({2-[(3-methylpentanoyl)sulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]butanimidic acid

C27H46N7O17P3S (865.1884)


3-methylpentanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-methylpentanoic acid thioester of coenzyme A. 3-methylpentanoyl-coa is an acyl-CoA with 5 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-methylpentanoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-methylpentanoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-Methylpentanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-Methylpentanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-Methylpentanoyl-CoA into 3-Methylpentanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-Methylpentanoylcarnitine is converted back to 3-Methylpentanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-Methylpentanoyl-CoA occurs in four steps. First, since 3-Methylpentanoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-Methylpentanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to ...

   

3-oxopentanoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-[2-({2-[(3-oxopentanoyl)sulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]butanimidic acid

C26H42N7O18P3S (865.152)


3-oxopentanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-oxopentanoic acid thioester of coenzyme A. 3-oxopentanoyl-coa is an acyl-CoA with 5 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-oxopentanoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-oxopentanoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-oxopentanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-oxopentanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-oxopentanoyl-CoA into 3-oxopentanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-oxopentanoylcarnitine is converted back to 3-oxopentanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-oxopentanoyl-CoA occurs in four steps. First, since 3-oxopentanoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-oxopentanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and NADH is produced from NAD+. F...

   

4-oxopentanoyl-CoA

{[5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(4-oxopentanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C26H42N7O18P3S (865.152)


4-oxopentanoyl-coa, also known as laevulinate-coa; (acyl-CoA); [m+h]+; is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 4-oxopentanoic acid thioester of coenzyme A. 4-oxopentanoyl-coa is an acyl-CoA with 5 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 4-oxopentanoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 4-oxopentanoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 4-oxopentanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 4-oxopentanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 4-oxopentanoyl-CoA into 4-oxopentanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 4-oxopentanoylcarnitine is converted back to 4-oxopentanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 4-oxopentanoyl-CoA occurs in four steps. First, since 4-oxopentanoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 4-oxopentanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol...

   
   

alphamethylacetoacetyl CoA

alphamethylacetoacetyl CoA

C26H42N7O18P3S (865.152)


   
   

Coenzyme A, S-(3-oxopentanoate)

Coenzyme A, S-(3-oxopentanoate)

C26H42N7O18P3S (865.152)


   

Coenzyme A, S-(2-methyl-3-oxobutanoate)

Coenzyme A, S-(2-methyl-3-oxobutanoate)

C26H42N7O18P3S (865.152)


   

CoA 5:1;O

3-phosphoadenosine 5-{3-[(3R)-3-hydroxy-2,2-dimethyl-4-{[3-({2-[(2-methyl-3-oxobutanoyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-4-oxobutyl] dihydrogen diphosphate}

C26H42N7O18P3S (865.152)


   

CoA 6:0

Coenzyme A, S-hexanoate;Hexanoyl-coenzyme A;S-Hexanoyl-coenzym-A;S-hexanoyl-CoA;S-hexanoyl-coenzyme-A;caproyl-CoA;caproyl-coenzyme A;n-hexanoyl-CoA;n-hexanoyl-coenzyme A

C27H46N7O17P3S (865.1884)


   

Succinyl-Coenzyme A (sodium salt)

Succinyl-Coenzyme A (sodium salt)

C25H38N7O19P3S (865.1156)


   

methyl orange-xylene cyanol

methyl orange-xylene cyanol

C39H41N5Na2O9S3 (865.1862)


   
   

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 3-oxopentanethioate

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 3-oxopentanethioate

C26H42N7O18P3S (865.152)


   

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 2-methylpentanethioate

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 2-methylpentanethioate

C27H46N7O17P3S (865.1884)


   

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 3-methylpentanethioate

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 3-methylpentanethioate

C27H46N7O17P3S (865.1884)


   

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 4-oxopentanethioate

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 4-oxopentanethioate

C26H42N7O18P3S (865.152)


   

(3S)-3,4-dihydroxybutanoyl-CoA

(3S)-3,4-dihydroxybutanoyl-CoA

C25H38N7O19P3S-4 (865.1156)


   

alpha-methylacetoacetyl-CoA

alpha-methylacetoacetyl-CoA

C26H42N7O18P3S (865.152)


   

S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 3-methylpentanethioate

S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 3-methylpentanethioate

C27H46N7O17P3S (865.1884)


   

Maleyl-coenzyme A; (Acyl-CoA); [M+H]+

Maleyl-coenzyme A; (Acyl-CoA); [M+H]+

C25H38N7O19P3S (865.1156)


   

2-Methylacetoacetyl-CoA; (Acyl-CoA); [M+H]+

2-Methylacetoacetyl-CoA; (Acyl-CoA); [M+H]+

C26H42N7O18P3S (865.152)


   

CID447683; (Acyl-CoA); [M+H]+

CID447683; (Acyl-CoA); [M+H]+

C25H38N7O19P3S (865.1156)


   

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (2R)-2-methylpentanethioate

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (2R)-2-methylpentanethioate

C27H46N7O17P3S (865.1884)


   

Alpha-ketoisovalerate-CoA; (Acyl-CoA); [M+H]+

Alpha-ketoisovalerate-CoA; (Acyl-CoA); [M+H]+

C26H42N7O18P3S (865.152)


   

PubChem CID: 25245510; (Acyl-CoA); [M+H]+

PubChem CID: 25245510; (Acyl-CoA); [M+H]+

C27H46N7O17P3S (865.1884)


   

Tetrahydrofuran-2-Carboxylic Acid-CoA; (Acyl-CoA); [M+H]+

Tetrahydrofuran-2-Carboxylic Acid-CoA; (Acyl-CoA); [M+H]+

C26H42N7O18P3S (865.152)


   

Hexanoyl-CoA

Hexanoyl-coenzyme A

C27H46N7O17P3S (865.1884)


A medium-chain fatty acyl-CoA having hexanoyl as the S-acyl group.

   

2-Methylacetoacetyl-CoA

2-Methylacetoacetyl-CoA

C26H42N7O18P3S (865.152)


A 3-oxoacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 2-methylacetoacetic acid.

   

Methylacetoacetyl-CoA

Methylacetoacetyl-CoA

C26H42N7O18P3S (865.152)