Exact Mass: 856.4608828
Exact Mass Matches: 856.4608828
Found 274 metabolites which its exact mass value is equals to given mass value 856.4608828
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(6E,8Z,11Z,14Z)+=O(5))
C48H73O11P (856.4890237999999)
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(20:4(6E,8Z,11Z,14Z)+=O(5)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
C48H73O11P (856.4890237999999)
PG(20:4(6E,8Z,11Z,14Z)+=O(5)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(6E,8Z,11Z,14Z)+=O(5)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,13E)+=O(15))
C48H73O11P (856.4890237999999)
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(20:4(5Z,8Z,11Z,13E)+=O(15)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
C48H73O11P (856.4890237999999)
PG(20:4(5Z,8Z,11Z,13E)+=O(15)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,13E)+=O(15)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))
C48H73O11P (856.4890237999999)
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
C48H73O11P (856.4890237999999)
PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))
C48H73O11P (856.4890237999999)
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
C48H73O11P (856.4890237999999)
PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))
C48H73O11P (856.4890237999999)
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
C48H73O11P (856.4890237999999)
PG(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))
C48H73O11P (856.4890237999999)
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
C48H73O11P (856.4890237999999)
PG(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PGP(a-13:0/PGE2)
PGP(a-13:0/PGE2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-13:0/PGE2), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(PGE2/a-13:0)
PGP(PGE2/a-13:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGE2/a-13:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(a-13:0/PGD2)
PGP(a-13:0/PGD2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-13:0/PGD2), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(PGD2/a-13:0)
PGP(PGD2/a-13:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGD2/a-13:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(a-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))
PGP(a-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-13:0)
PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-13:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-13:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(a-17:0/18:1(12Z)-O(9S,10R))
PGP(a-17:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-17:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:1(12Z)-O(9S,10R)/a-17:0)
PGP(18:1(12Z)-O(9S,10R)/a-17:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-O(9S,10R)/a-17:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(a-17:0/18:1(9Z)-O(12,13))
PGP(a-17:0/18:1(9Z)-O(12,13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-17:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:1(9Z)-O(12,13)/a-17:0)
PGP(18:1(9Z)-O(12,13)/a-17:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)-O(12,13)/a-17:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(i-13:0/PGE2)
PGP(i-13:0/PGE2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-13:0/PGE2), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(PGE2/i-13:0)
PGP(PGE2/i-13:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGE2/i-13:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(i-13:0/PGD2)
PGP(i-13:0/PGD2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-13:0/PGD2), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(PGD2/i-13:0)
PGP(PGD2/i-13:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGD2/i-13:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(i-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))
PGP(i-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-13:0)
PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-13:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-13:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(i-14:0/20:3(8Z,11Z,14Z)-2OH(5,6))
PGP(i-14:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-14:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-14:0)
PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-14:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-14:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(i-17:0/18:1(12Z)-O(9S,10R))
PGP(i-17:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-17:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:1(12Z)-O(9S,10R)/i-17:0)
PGP(18:1(12Z)-O(9S,10R)/i-17:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-O(9S,10R)/i-17:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(i-17:0/18:1(9Z)-O(12,13))
PGP(i-17:0/18:1(9Z)-O(12,13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-17:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:1(9Z)-O(12,13)/i-17:0)
PGP(18:1(9Z)-O(12,13)/i-17:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)-O(12,13)/i-17:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
Glycyrrhizin
C42H68N2O16 (856.4568608000001)
Diammonium Glycyrrhizinate is the diammonium salt of glycyrrhizin and the active constituent in the traditional Chinese medicinal herb Glycyrrhiza uralensis (Chinese liquorice or Gan-Cao) with anti-inflammatory, antioxidant and hepatoprotective properties. Diammonium glycyrrhizinate (DG) is slowly metabolized within the cells into glycyrrhetic acid, which inhibits enzymes that control cortisol metabolism and contributes to this agents anti-inflammatory effect. Although the exact mechanism of action remains to be fully elucidated, DG may prevent or reduce hepatotoxicity via the scavenging of free radicals. This agent also upregulates the expression of transcription coactivator PGC-1alpha and modulates hepatic enzymes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), superoxide dismutase and glutathion peroxidase. A widely used anti-inflammatory agent isolated from the licorice root. It is metabolized to GLYCYRRHETINIC ACID, which inhibits 11-BETA-HYDROXYSTEROID DEHYDROGENASES and other enzymes involved in the metabolism of CORTICOSTEROIDS. Therefore, glycyrrhizic acid, which is the main and sweet component of licorice, has been investigated for its ability to cause hypermineralocorticoidism with sodium retention and potassium loss, edema, increased blood pressure, as well as depression of the renin-angiotensin-aldosterone system. Diammonium Glycyrrhizinate, isolated from the licorice root, is a widely used anti-inflammatory agent[1]. Diammonium Glycyrrhizinate, isolated from the licorice root, is a widely used anti-inflammatory agent[1].
Diperamycin
C38H64N8O14 (856.4541763999999)
A 19-membered cyclodepsipeptide that is a hexadepsipeptide isolated from the fermentation broth of Streptomyces griseoaurantiacus MK393-AF2 and exhibits potent inhibitory activity against various Gram-positive bacteria including Enterococcus seriolicida and methicillin-resistant Staphylococcus aureus. D000890 - Anti-Infective Agents > D023181 - Antimicrobial Cationic Peptides
PI 36:5
Found in mouse liver; TwoDicalId=62; MgfFile=160824_Liver_EPA_Neg_10; MgfId=378 Found in mouse small intestine; TwoDicalId=146; MgfFile=160907_Small_Intestine_EPA_Neg_06; MgfId=752
3-O-[beta-D-glucopyranosyl-(1->4)-beta-D-xylopyranosyl]-11alpha-methoxyphytolaccagenin|phytolaccasaponin N-3
3-O-{[alpha-L-arabinopyranosyl-(1->2)]-[alpha-L-rhamnopyranosyl-(1->6)-beta-D-glucopyranosyl]}-(25S)-5beta-spirostan-3beta-ol|shatavaroside A
laxogenin 3-O-4)-O-6)>-beta-D-glucopyranoside>|laxogenin 3-O-beta-xylopyranosyl-(1->4)-6)>-beta-glucopyranoside|laxogenin 3-O-beta-xylopyranosyl-(1->4)-[alpha-arabinopyranosyl(1->6)]-beta-glucopyranoside|Laxogenin 3-O-{O-??-D-xylopyranosyl-(1鈥樏傗垎4)-O-[??-L-arabinopyranosyl-(1鈥樏傗垎6)-??-D-glucopyranoside]}|laxogenin-3-O-beta-D-xylopyranosyl-(1->4)-alpha-L-arabinopyranosyl-(1->6)-beta-D-glucopyranoside|laxogenin-3-yl 6-O-(alpha-L-arabinopyranosyl)-4-O-(beta-D-xylopyranosyl)-beta-D-glucopyranoside|Xiebai saponin I
(24S,25S)-3beta,24-dihydroxyspirost-5-en-1beta-yl O-alpha-L-rhamnospyranosyl-(1->2)-O-[beta-D-xylopyranosyl-(1->3)]-alpha-L-arabinopyranoside
Convallasaponin-C|Convallasaponin-C, Isorhodeasapogenin-(3)-alpha.L-rhamnopyranosyl(1->3 rham.)-alpha.L-rhamnopyranosyl-(1->2 arab.)-alpha.L-arabopyranosid
(11S)-hydroxyhexadecanoate 11-O-alpha-L-rhamnopyranosyl-(1-4)-O-[alpha-L-rhamnopyranosyl-(1-4)]-O-alpha-L-rhamnopyranosyl-(1-2)-O-beta-D-fucopyranoside|mammoside I|operculinic acid C
(3beta,17alpha,25R)-spirost-5-ene-3,17-diol-3-O-beta-D-xylopyranosyl-(1->5)-alpha-L-arabinofuranosyl-(1->4)-beta-D-glucopyranoside
3-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl]-16-O-hydroxyacetoxy-3alpha,6alpha,16alpha,25-tetrahydroxy-20(R),24(S)-epoxycycloartane
(25R)-3beta-hydroxy-5alpha-spirostan-12-one-3-O-beta-xylopyranosyl(1->4)-[alpha-arabinopyranosyl(1->6)]-beta-glucopyranoside|filiasparoside A
cyclo-(trans-Pro1-cis-Pro2-Phe3-Asp4-trans-Pro5-Arg6-Phe7)|stylissamide F
C43H56N10O9 (856.4231526000001)
PI(14:1(9Z)/22:4(7Z,10Z,13Z,16Z))
PI(18:1(9Z)/18:4(6Z,9Z,12Z,15Z))
PI(18:2(9Z,12Z)/18:3(6Z,9Z,12Z))
PI(18:2(9Z,12Z)/18:3(9Z,12Z,15Z))
PI(18:3(6Z,9Z,12Z)/18:2(9Z,12Z))
PI(18:3(9Z,12Z,15Z)/18:2(9Z,12Z))
PI(18:4(6Z,9Z,12Z,15Z)/18:1(9Z))
PI(20:4(5Z,8Z,11Z,14Z)/16:1(9Z))
PI(20:5(5Z,8Z,11Z,14Z,17Z)/16:0)
PI(22:4(7Z,10Z,13Z,16Z)/14:1(9Z))
PI(16:1(9Z)/20:4(5Z,8Z,11Z,14Z))
PI(16:0/20:5(5Z,8Z,11Z,14Z,17Z))
Tigogenin 3-O-beta-D-xylopyranosyl(1->2)-alpha-L-rhamnopyranosyl(1->3)-Beta-D-glucopyranoside
1,4-Bis(dihydroquinine)anthraquinoneanthraquinone
C54H56N4O6 (856.4199636000001)
1,4-BIS((1S)-(6-METHOXYQUINOLIN-4-YL)(5-VINYLQUINUCLIDIN-2-YL)METHYL)ANTHRACENE-9,10-DIONE
C54H56N4O6 (856.4199636000001)
(10S,11R,14S,16S,20S,21R,24E)-14,16-dihydroxy-20-{(2S,3S,7R,8R,10E)-11-[(hydroxymethyl)(methyl)amino]-2,8-dimethoxy-3,7-dimethyl-6-oxoundec-10-en-1-yl}-10-methoxy-11,21-dimethyl-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1~2,5~.1~6,9~]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaene-12,18-dione
Diammonium Glycyrrhizinate
C42H68N2O16 (856.4568608000001)
D000893 - Anti-Inflammatory Agents C1907 - Drug, Natural Product Diammonium Glycyrrhizinate, isolated from the licorice root, is a widely used anti-inflammatory agent[1]. Diammonium Glycyrrhizinate, isolated from the licorice root, is a widely used anti-inflammatory agent[1].
[1-hexadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[(2R)-3-[hydroxy-[(2R,3R,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(6E,8Z,11Z,14Z)+=O(5))
C48H73O11P (856.4890237999999)
PG(20:4(6E,8Z,11Z,14Z)+=O(5)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
C48H73O11P (856.4890237999999)
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,13E)+=O(15))
C48H73O11P (856.4890237999999)
PG(20:4(5Z,8Z,11Z,13E)+=O(15)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
C48H73O11P (856.4890237999999)
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))
C48H73O11P (856.4890237999999)
PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
C48H73O11P (856.4890237999999)
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))
C48H73O11P (856.4890237999999)
PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
C48H73O11P (856.4890237999999)
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))
C48H73O11P (856.4890237999999)
PG(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
C48H73O11P (856.4890237999999)
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))
C48H73O11P (856.4890237999999)
PG(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
C48H73O11P (856.4890237999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-[(Z)-hexadec-9-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] octadecanoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-icos-11-enoate
[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (Z)-octadec-9-enoate
[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate
[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate
[1-[(Z)-hexadec-4-enoyl]oxy-3-[hydroxy-[(2S,3R,5S,6S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-icosa-4,7,10,13-tetraenoate
[1-hexadecanoyloxy-3-[hydroxy-[(2S,3S,5R,6S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z)-icosa-4,7,10,13,16-pentaenoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (E)-octadec-6-enoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (E)-octadec-11-enoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-octadec-17-enoyloxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (E)-octadec-11-enoate
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate
[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[(2S,3S,6S)-6-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C47H68O12S (856.4431248000001)
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (E)-octadec-6-enoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate
[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (E)-octadec-11-enoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate
[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-icos-11-enoate
[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (E)-octadec-6-enoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-octadec-17-enoyloxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (E)-octadec-4-enoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (E)-octadec-6-enoate
[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-octadec-17-enoyloxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (E)-octadec-9-enoate
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] icosanoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (E)-octadec-7-enoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (E)-octadec-4-enoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (E)-octadec-7-enoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (E)-octadec-9-enoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (E)-octadec-11-enoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (E)-octadec-4-enoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (E)-octadec-13-enoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (E)-octadec-4-enoate
[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate
[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (E)-octadec-9-enoate
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate
[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate
[(2S)-2-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (11E,14E)-icosa-11,14-dienoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (E)-octadec-13-enoate
[(2S,3S,6S)-6-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C47H68O12S (856.4431248000001)
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (E)-octadec-9-enoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate
[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (E)-octadec-13-enoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (E)-octadec-7-enoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (E)-octadec-7-enoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (E)-octadec-13-enoate
[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-octadec-17-enoyloxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate
1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z-octadecenoyl)-glycero-3-phospho-(1-myo-inositol)
phosphatidylinositol 36:5
A 1-phosphatidyl-1D-myo-inositol in which the two acyl groups contain a total of 36 carbon atoms and 5 double bonds.
SQDG(38:11)
C47H68O12S (856.4431248000001)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
(2s)-n-[(4as,7s,10s,13r,14s,17r,20r)-20-[(2s)-butan-2-yl]-5,15,18-trihydroxy-10-isopropyl-17-[(4-methoxyphenyl)methyl]-9,13-dimethyl-7-(2-methylpropyl)-8,11,21-trioxo-1h,2h,3h,4h,4ah,7h,10h,13h,14h,17h,20h-pyridazino[3,2-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-14-yl]-2-[(hydroxymethylidene)amino]-3-methylbutanimidic acid
(2s,3r,4s,5s,6r)-2-{[(3s,4r,5r,6s)-6-{[(2r,3r,4r,5s,6s)-4,5-dihydroxy-6-methyl-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-3-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-5-hydroxy-2-[(1's,2r,2's,4s,4's,5s,7's,8'r,9's,12's,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-4,16'-dioloxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(10s,11r,14s,16s,20s,21r,24e)-14,16-dihydroxy-20-[(2s,3s,7r,8r,10e)-11-[(hydroxymethyl)(methyl)amino]-2,8-dimethoxy-3,7-dimethyl-6-oxoundec-10-en-1-yl]-10-methoxy-11,21-dimethyl-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaene-12,18-dione
10,20-dimethyl-5,15-bis(2-methylcyclopropyl)-9,19-bis[(3,4,5-trimethoxyoxan-2-yl)oxy]-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione
14,16-dihydroxy-20-{11-[(hydroxymethyl)(methyl)amino]-2,8-dimethoxy-3,7-dimethyl-6-oxoundec-10-en-1-yl}-10-methoxy-11,21-dimethyl-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaene-12,18-dione
asparanin b2
{"Ingredient_id": "HBIN017106","Ingredient_name": "asparanin b2","Alias": "NA","Ingredient_formula": "C44H72O16","Ingredient_Smile": "CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CCC6C5(CCC(C6)OC7C(C(C(C(O7)C)O)O)OC8C(C(C(CO8)OC9C(C(C(C(O9)CO)O)O)O)O)O)C)C)C)OC1","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1870","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's,18's)-16'-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-6-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-19'-one
[9,24-dibenzyl-12-(3-carbamimidamidopropyl)-11,14,23,26-tetrahydroxy-2,8,20-trioxo-1,7,10,13,19,22,25-heptaazatetracyclo[25.3.0.0³,⁷.0¹⁵,¹⁹]triaconta-10,13,22,25-tetraen-21-yl]acetic acid
C43H56N10O9 (856.4231526000001)
2-[(5-hydroxy-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-4,16'-dioloxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol
2-[(3,4-dihydroxy-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)methoxy]-6-methyloxane-3,4,5-triol
(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(1s,5s,7s,9s,10s,11s,15s,17s,19s,20s)-10,20-dimethyl-5,15-bis[(1s,2s)-2-methylcyclopropyl]-9,19-bis({[(2s,3r,4s,5r)-3,4,5-trimethoxyoxan-2-yl]oxy})-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione
(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-3,4-dihydroxy-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]methoxy}-6-methyloxane-3,4,5-triol
(1s,5s,7s,9s,10s,11s,15s,17s,19s,20s)-10,20-dimethyl-5,15-bis[(1s,2s)-2-methylcyclopropyl]-9,19-bis[(3,4,5-trimethoxyoxan-2-yl)oxy]-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione
[(3s,9s,12s,15s,21s,24s,27s)-9,24-dibenzyl-12-(3-carbamimidamidopropyl)-11,14,23,26-tetrahydroxy-2,8,20-trioxo-1,7,10,13,19,22,25-heptaazatetracyclo[25.3.0.0³,⁷.0¹⁵,¹⁹]triaconta-10,13,22,25-tetraen-21-yl]acetic acid
C43H56N10O9 (856.4231526000001)
(1's,2r,4s,5s,6r,10'e,12'e,14's,15's,16'e,19'r)-6-[(2s)-butan-2-yl]-4,7'-dihydroxy-15'-{[(2r,4s,5s,6s)-5-{[(2s,4s,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-5,6',10',14',16'-pentamethyl-2',20'-dioxaspiro[oxane-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-4',6',8',10',12',16'-hexaen-3'-one
2-(5-hexyl-2-hydroxy-6-methyloxan-2-yl)-2-hydroxy-n-[5,7,21-trihydroxy-6-(methoxymethyl)-17,20-dimethyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl]propanimidic acid
C38H64N8O14 (856.4541763999999)
(2s,3r,4s,5s,6r)-6-{[(2s,3s,4r,5r,6s)-2-{[(1s,2r,4s,6s,7r,8r,9s,10s,13s,14r,17r)-10-formyl-6-hydroxy-8,14-dimethyl-7-(2-methylprop-1-en-1-yl)-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-17-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl 4-hydroxybenzoate
(1'r,2s,4's,5s,6r,8'r,10'e,12's,13's,14'e,16'e,20's,24's)-24'-hydroxy-12'-{[(2r,4s,5s,6s)-5-{[(2s,4s,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-6-isopropyl-5,11',13',22'-tetramethyl-5,6-dihydro-3',7',19'-trioxaspiro[pyran-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraene-2',21'-dione
(11r)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}hexadecanoic acid
2-methyl 4a-(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2s,4ar,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-11-hydroxy-9-(hydroxymethyl)-2,6a,6b,9,12a-pentamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-2,4a-dicarboxylate
16'-({3,4-dihydroxy-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl}oxy)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one
(2s)-2-[(2s,5r,6s)-5-hexyl-2-hydroxy-6-methyloxan-2-yl]-2-hydroxy-n-[(6r,9r,16s,17r,20r,23s)-5,7,21-trihydroxy-6-(methoxymethyl)-17,20-dimethyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl]propanimidic acid
C38H64N8O14 (856.4541763999999)
(11r)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}hexadecanoic acid
24'-hydroxy-12'-({5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-6-isopropyl-5,11',13',22'-tetramethyl-5,6-dihydro-3',7',19'-trioxaspiro[pyran-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraene-2',21'-dione
4,7'-dihydroxy-15'-({5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-5,6',10',14',16'-pentamethyl-6-(sec-butyl)-2',20'-dioxaspiro[oxane-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-4',6',8',10',12',16'-hexaen-3'-one
(2r,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-3,4-dihydroxy-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]methoxy}-6-methyloxane-3,4,5-triol
2-hydroxy-2-[2-hydroxy-6-methyl-5-(2-methylpropyl)oxan-2-yl]-n-[5,7,21-trihydroxy-17-isopropyl-6-(methoxymethyl)-20-methyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl]propanimidic acid
C38H64N8O14 (856.4541763999999)
(2s,3r,4s,5r,6s)-6-{[(2r,3r,4s,5s,6r)-2-{[(1r,2s,4s,6r,8s,9r,10r,13s,14r,17s)-10-formyl-6-hydroxy-8,14-dimethyl-7-(2-methylprop-1-en-1-yl)-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-17-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl 4-hydroxybenzoate
11-[(3-{[5-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl)oxy]hexadecanoic acid
16'-({3,4-dihydroxy-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl}oxy)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-19'-one
(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's,18's)-16'-{[(2s,3s,4s,5r,6s)-3,4-dihydroxy-5-{[(2r,3s,4r,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-6-({[(2r,3s,4r,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-19'-one
(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5r)-5-hydroxy-2-[(1's,2r,2's,4s,4's,5s,7's,8'r,9's,12's,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-4,16'-dioloxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
11-[(3-{[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl)oxy]hexadecanoic acid
(2s,3r,4r,5r)-6-{[(2r,3r,4s,5s,6r)-2-{[(1r,2s,4s,6r,7s,8s,9r,10r,13s,14r,17s)-10-formyl-6-hydroxy-8,14-dimethyl-7-(2-methylprop-1-en-1-yl)-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-17-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl 4-hydroxybenzoate
(1s,3r,6r,7s,8s,9s,10s,11s,14s,16s)-6-acetyl-14-{[(2r,4r,5r,6r)-5-{[(2s,3r,4r,5r,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-7,11-dimethyl-9-{[(2s)-2-methylbutanoyl]oxy}-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-8-yl benzoate
(10'z,12'z,16'z)-4,7'-dihydroxy-15'-({5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-5,6',10',14',16'-pentamethyl-6-(sec-butyl)-2',20'-dioxaspiro[oxane-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-4',6',8',10',12',16'-hexaen-3'-one
6-[(2-{[10-formyl-6-hydroxy-8,14-dimethyl-7-(2-methylprop-1-en-1-yl)-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-17-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-4,5-dihydroxy-2-methyloxan-3-yl 4-hydroxybenzoate
6,14,20,28-tetraamino-5,19-bis({[3,5-dihydroxy-5-methyl-4-(methylamino)oxan-2-yl]oxy})-2,16,29,30-tetraoxa-9,23-diazapentacyclo[23.3.1.1¹¹,¹⁵.0³,⁸.0¹⁷,²²]triaconta-9,11,23,25-tetraene-4,18-diol
C38H64N8O14 (856.4541763999999)
(2s,3r,4s,5r,6s)-6-{[(2r,3r,4s,5s,6r)-2-{[(1r,2s,4s,6r,7s,8s,9r,10r,13s,14r,17s)-10-formyl-6-hydroxy-8,14-dimethyl-7-(2-methylprop-1-en-1-yl)-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-17-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl 4-hydroxybenzoate
2-[(hydroxymethylidene)amino]-3-methyl-n-{5,15,18-trihydroxy-10-isopropyl-17-[(4-methoxyphenyl)methyl]-9,13-dimethyl-7-(2-methylpropyl)-8,11,21-trioxo-20-(sec-butyl)-1h,2h,3h,4h,4ah,7h,10h,13h,14h,17h,20h-pyridazino[3,2-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-14-yl}butanimidic acid
(2s)-2-hydroxy-2-[(2s,5s,6s)-2-hydroxy-6-methyl-5-(2-methylpropyl)oxan-2-yl]-n-[(6s,9r,16s,17s,20r,23s)-5,7,21-trihydroxy-17-isopropyl-6-(methoxymethyl)-20-methyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl]propanimidic acid
C38H64N8O14 (856.4541763999999)
(1s,5s,7r,9s,10s,11s,15s,17r,19s,20s)-10,20-dimethyl-5,15-bis[(1r,2r)-2-methylcyclopropyl]-9,19-bis({[(2s,3r,4s,5r)-3,4,5-trimethoxyoxan-2-yl]oxy})-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione
(2r,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(2s,3r,4r,5r,6s)-6-{[(2r,3r,4s,5s,6r)-2-{[(1r,2s,4s,6r,7s,8s,9r,10r,13s,14r,17s)-10-formyl-6-hydroxy-8,14-dimethyl-7-(2-methylprop-1-en-1-yl)-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-17-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl 4-hydroxybenzoate
(2s,4ar,6as,6br,8ar,9r,10r,11s,12as,12br,13r,14bs)-10-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11-hydroxy-9-(hydroxymethyl)-13-methoxy-2-(methoxycarbonyl)-2,6a,6b,9,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(1r,3s,4s,5r,6s,8r,14r,15s,17r,18r,19s,20r,22s,28s)-6,14,20,28-tetraamino-5,19-bis({[(2r,3r,4r,5r)-3,5-dihydroxy-5-methyl-4-(methylamino)oxan-2-yl]oxy})-2,16,29,30-tetraoxa-9,23-diazapentacyclo[23.3.1.1¹¹,¹⁵.0³,⁸.0¹⁷,²²]triaconta-9,11,23,25-tetraene-4,18-diol
C38H64N8O14 (856.4541763999999)