Exact Mass: 844.4373853999999

Exact Mass Matches: 844.4373853999999

Found 119 metabolites which its exact mass value is equals to given mass value 844.4373853999999, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Cyclopassifloside III

3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl 4,6-dihydroxy-15-[5-hydroxy-6-methyl-5-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)heptan-2-yl]-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylic acid

C43H72O16 (844.4820112)


Cyclopassifloside III is found in fruits. Cyclopassifloside III is a constituent of Passiflora edulis (passion fruit). Constituent of Passiflora edulis (passion fruit). Cyclopassifloside III is found in fruits.

   

Solithromycin

1-{4-[4-(3-aminophenyl)-1H-1,2,3-triazol-1-yl]butyl}-10-{[4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-4-ethyl-7-fluoro-11-methoxy-3a,7,9,11,13,15-hexamethyl-tetradecahydro-1H-oxacyclotetradeca[4,3-d][1,3]oxazole-2,6,8,14-tetrone

C43H65FN6O10 (844.4745962000001)


   

PE(14:1(9Z)/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-{[(2-aminoethoxy)(hydroxy)phosphoryl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propan-2-yl]oxy}-3-oxopropyl]sulfanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C42H73N2O11PS (844.4672438)


PE(14:1(9Z)/LTE4) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(14:1(9Z)/LTE4), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(LTE4/14:1(9Z))

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-3-{[(2-aminoethoxy)(hydroxy)phosphoryl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]-3-oxopropyl]sulfanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C42H73N2O11PS (844.4672438)


PE(LTE4/14:1(9Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(LTE4/14:1(9Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/PGF2alpha)

[(2S)-3-({[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C38H70O16P2 (844.413888)


PGP(i-12:0/PGF2alpha) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/PGF2alpha), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGF2alpha/i-12:0)

[(2S)-3-({[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C38H70O16P2 (844.413888)


PGP(PGF2alpha/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGF2alpha/i-12:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/PGE1)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H70O16P2 (844.413888)


PGP(i-12:0/PGE1) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/PGE1), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGE1/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H70O16P2 (844.413888)


PGP(PGE1/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGE1/i-12:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/PGD1)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H70O16P2 (844.413888)


PGP(i-12:0/PGD1) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/PGD1), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGD1/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H70O16P2 (844.413888)


PGP(PGD1/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGD1/i-12:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-14:0/5-iso PGF2VI)

[(2S)-3-({[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C38H70O16P2 (844.413888)


PGP(i-14:0/5-iso PGF2VI) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-14:0/5-iso PGF2VI), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(5-iso PGF2VI/i-14:0)

[(2S)-3-({[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C38H70O16P2 (844.413888)


PGP(5-iso PGF2VI/i-14:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(5-iso PGF2VI/i-14:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PI(16:2(9Z,12Z)/18:2(10E,12Z)+=O(9))

[(2R)-3-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H73O14P (844.4737687999999)


PI(16:2(9Z,12Z)/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:2(9Z,12Z)/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of 9Z,12Z-hexadecenoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:2(10E,12Z)+=O(9)/16:2(9Z,12Z))

[(2R)-2-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H73O14P (844.4737687999999)


PI(18:2(10E,12Z)+=O(9)/16:2(9Z,12Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:2(10E,12Z)+=O(9)/16:2(9Z,12Z)), in particular, consists of one chain of 9-oxo-octadecadienoyl at the C-1 position and one chain of 9Z,12Z-hexadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(16:2(9Z,12Z)/18:2(9Z,11E)+=O(13))

[(2R)-3-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H73O14P (844.4737687999999)


PI(16:2(9Z,12Z)/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:2(9Z,12Z)/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of 9Z,12Z-hexadecenoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:2(9Z,11E)+=O(13)/16:2(9Z,12Z))

[(2R)-2-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H73O14P (844.4737687999999)


PI(18:2(9Z,11E)+=O(13)/16:2(9Z,12Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:2(9Z,11E)+=O(13)/16:2(9Z,12Z)), in particular, consists of one chain of 13-oxo-octadecadienoyl at the C-1 position and one chain of 9Z,12Z-hexadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(16:2(9Z,12Z)/18:3(10,12,15)-OH(9))

[(2R)-3-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H73O14P (844.4737687999999)


PI(16:2(9Z,12Z)/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:2(9Z,12Z)/18:3(10,12,15)-OH(9)), in particular, consists of one chain of 9Z,12Z-hexadecenoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:3(10,12,15)-OH(9)/16:2(9Z,12Z))

[(2R)-2-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H73O14P (844.4737687999999)


PI(18:3(10,12,15)-OH(9)/16:2(9Z,12Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:3(10,12,15)-OH(9)/16:2(9Z,12Z)), in particular, consists of one chain of 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 9Z,12Z-hexadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(16:2(9Z,12Z)/18:3(9,11,15)-OH(13))

[(2R)-3-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H73O14P (844.4737687999999)


PI(16:2(9Z,12Z)/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:2(9Z,12Z)/18:3(9,11,15)-OH(13)), in particular, consists of one chain of 9Z,12Z-hexadecenoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:3(9,11,15)-OH(13)/16:2(9Z,12Z))

[(2R)-2-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H73O14P (844.4737687999999)


PI(18:3(9,11,15)-OH(13)/16:2(9Z,12Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:3(9,11,15)-OH(13)/16:2(9Z,12Z)), in particular, consists of one chain of 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 9Z,12Z-hexadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

Cuscutic acid C

(-)-Cuscutic acid C

C38H68O20 (844.4303728)


   
   
   
   
   
   

cellobiosyl-digigulomethyloside

cellobiosyl-digigulomethyloside

C41H64O18 (844.4092444)


   
   
   

3beta-[O4-(O6-beta-D-Glucopyranosyl-beta-D-glucopyranosyl)-alpha-L-rhamnopyranosyloxy]-14-hydroxy-5beta.14beta-card-20(22)-enolid|3beta-[O4-(O6-beta-D-glucopyranosyl-beta-D-glucopyranosyl)-alpha-L-rhamnopyranosyloxy]-14-hydroxy-5beta.14beta-card-20(22)-enolide

3beta-[O4-(O6-beta-D-Glucopyranosyl-beta-D-glucopyranosyl)-alpha-L-rhamnopyranosyloxy]-14-hydroxy-5beta.14beta-card-20(22)-enolid|3beta-[O4-(O6-beta-D-glucopyranosyl-beta-D-glucopyranosyl)-alpha-L-rhamnopyranosyloxy]-14-hydroxy-5beta.14beta-card-20(22)-enolide

C41H64O18 (844.4092444)


   
   
   

(3beta,5alpha,11alpha,12beta,14beta,17alpha)-12-acetoxy-3-[(2,6-dideoxy-4-O-(6-deoxy-3-O-methyl-beta-D-allopyranosyl)-3-O-methyl-beta-D-arabino-hexopyranosyl)oxy]-20-oxo-8,14-epoxypregnan-11-yl (4-hydroxyphenyl)acetate|12-O-acetyl-11-O-[(4-hydroxyphenyl)acetyl]-3-O-pachybiosyltenacigenin B|marsdenoside J

(3beta,5alpha,11alpha,12beta,14beta,17alpha)-12-acetoxy-3-[(2,6-dideoxy-4-O-(6-deoxy-3-O-methyl-beta-D-allopyranosyl)-3-O-methyl-beta-D-arabino-hexopyranosyl)oxy]-20-oxo-8,14-epoxypregnan-11-yl (4-hydroxyphenyl)acetate|12-O-acetyl-11-O-[(4-hydroxyphenyl)acetyl]-3-O-pachybiosyltenacigenin B|marsdenoside J

C45H64O15 (844.4244994)


   

H-Leu-DLeu-His-Asp-His-Pro-Asn-OH|L-(D-Leu)-HDHPN

H-Leu-DLeu-His-Asp-His-Pro-Asn-OH|L-(D-Leu)-HDHPN

C37H56N12O11 (844.4191306)


   
   
   

cyclo-(trans-Pro1-Tyr2-Lys3-trans-Pro4-cis-Pro5-Val6-Tyr7)|stylissamide A

cyclo-(trans-Pro1-Tyr2-Lys3-trans-Pro4-cis-Pro5-Val6-Tyr7)|stylissamide A

C44H60N8O9 (844.448303)


   

3-O-beta-D-glucopyranosyl-(1->3)-beta-D-glucopyranosyl-2beta,12alpha,16alpha,23alpha-tetrahydroxyoleanane-28(13)-lactone

3-O-beta-D-glucopyranosyl-(1->3)-beta-D-glucopyranosyl-2beta,12alpha,16alpha,23alpha-tetrahydroxyoleanane-28(13)-lactone

C42H68O17 (844.4456278)


   
   

[IIN-based: Match]

NCGC00385715-01! [IIN-based: Match]

C43H72O16 (844.4820112)


   

Cyclopassifloside III

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 4,6-dihydroxy-15-[5-hydroxy-6-methyl-5-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)heptan-2-yl]-7,12,16-trimethylpentacyclo[9.7.0.0^{1,3}.0^{3,8}.0^{12,16}]octadecane-7-carboxylate

C43H72O16 (844.4820112)


   

(S,S)-(+)-2,2-Bis[(R)-(N,N-dimethylamino)(phenyl)methyl]-1,1-bis(dicyclohexylphosphino) ferrocene

(S,S)-(+)-2,2-Bis[(R)-(N,N-dimethylamino)(phenyl)methyl]-1,1-bis(dicyclohexylphosphino) ferrocene

C52H74FeN2P2 (844.4676334000001)


   

Solithromycin

(1S,2R,5R,7R,8R,9R,11R,13S,14R)-15-[4-[4-(3-aminophenyl)triazol-1-yl]butyl]-8-[(2S,3R,4S,6R)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-2-ethyl-5-fluoro-9-methoxy-1,5,7,9,11,13-hexamethyl-3,17-dioxa-15-azabicyclo[12.3.0]heptadecane-4,6,12,16-tetrone

C43H65FN6O10 (844.4745962000001)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic

   
   

(E)-N-[(2S,3R,4R,5R,6R)-2-[(2R,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[2-[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]hexadec-2-enamide

(E)-N-[(2S,3R,4R,5R,6R)-2-[(2R,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[2-[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]hexadec-2-enamide

C39H64N4O16 (844.4317103999999)


   

(E)-N-[(2S,3R,4R,5R,6R)-2-[(2R,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[2-[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enamide

(E)-N-[(2S,3R,4R,5R,6R)-2-[(2R,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[2-[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enamide

C39H64N4O16 (844.4317103999999)


   

PGP(i-12:0/PGF2alpha)

PGP(i-12:0/PGF2alpha)

C38H70O16P2 (844.413888)


   

PGP(PGF2alpha/i-12:0)

PGP(PGF2alpha/i-12:0)

C38H70O16P2 (844.413888)


   
   
   
   
   

PGP(i-14:0/5-iso PGF2VI)

PGP(i-14:0/5-iso PGF2VI)

C38H70O16P2 (844.413888)


   

PGP(5-iso PGF2VI/i-14:0)

PGP(5-iso PGF2VI/i-14:0)

C38H70O16P2 (844.413888)


   
   
   

PI(16:2(9Z,12Z)/18:2(10E,12Z)+=O(9))

PI(16:2(9Z,12Z)/18:2(10E,12Z)+=O(9))

C43H73O14P (844.4737687999999)


   

PI(18:2(10E,12Z)+=O(9)/16:2(9Z,12Z))

PI(18:2(10E,12Z)+=O(9)/16:2(9Z,12Z))

C43H73O14P (844.4737687999999)


   

PI(16:2(9Z,12Z)/18:2(9Z,11E)+=O(13))

PI(16:2(9Z,12Z)/18:2(9Z,11E)+=O(13))

C43H73O14P (844.4737687999999)


   

PI(18:2(9Z,11E)+=O(13)/16:2(9Z,12Z))

PI(18:2(9Z,11E)+=O(13)/16:2(9Z,12Z))

C43H73O14P (844.4737687999999)


   

PI(16:2(9Z,12Z)/18:3(10,12,15)-OH(9))

PI(16:2(9Z,12Z)/18:3(10,12,15)-OH(9))

C43H73O14P (844.4737687999999)


   

PI(18:3(10,12,15)-OH(9)/16:2(9Z,12Z))

PI(18:3(10,12,15)-OH(9)/16:2(9Z,12Z))

C43H73O14P (844.4737687999999)


   

PI(16:2(9Z,12Z)/18:3(9,11,15)-OH(13))

PI(16:2(9Z,12Z)/18:3(9,11,15)-OH(13))

C43H73O14P (844.4737687999999)


   

PI(18:3(9,11,15)-OH(13)/16:2(9Z,12Z))

PI(18:3(9,11,15)-OH(13)/16:2(9Z,12Z))

C43H73O14P (844.4737687999999)


   
   

tunicamycin C2

tunicamycin C2

C39H64N4O16 (844.4317103999999)


A nucleoside that is one of the homologues in the mixture that is tunicamycin, characterised by a hexadec-2-enoyl fatty acyl substituent on the amino group of the tunicamine moiety.

   

Platycodon saponin 2

Platycodon saponin 2

C42H68O17 (844.4456278)


A natural product found in Platycodon grandiflorum.

   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-tetradecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (4E,7Z)-hexadeca-4,7-dienoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-tetradecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (4E,7Z)-hexadeca-4,7-dienoate

C39H74O15P2 (844.4502714)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (Z)-hexadec-7-enoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (Z)-hexadec-7-enoate

C39H74O15P2 (844.4502714)


   

[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1S,3S,4S,6S,7S,11S,12S,15R,16R)-4,6-dihydroxy-15-[(2R,5S)-5-hydroxy-6-methyl-5-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]heptan-2-yl]-7,12,16-trimethylpentacyclo[9.7.0.01,3.03,8.012,16]octadecane-7-carboxylate

[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1S,3S,4S,6S,7S,11S,12S,15R,16R)-4,6-dihydroxy-15-[(2R,5S)-5-hydroxy-6-methyl-5-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]heptan-2-yl]-7,12,16-trimethylpentacyclo[9.7.0.01,3.03,8.012,16]octadecane-7-carboxylate

C43H72O16 (844.4820112)


   

[(2S,3S,6S)-6-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C46H68O12S (844.4431248000001)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

C45H65O13P (844.416257)


   

tunicamycin C1

tunicamycin C1

C39H64N4O16 (844.4317103999999)


A nucleoside that is one of the homologues in the mixture that is tunicamycin, characterised by a 14-methylpentadec-2-enoyl fatty acyl substituent on the amino group of the tunicamine moiety.

   
   
   
   
   
   
   
   
   
   
   
   

(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,3s,4s,6s,7s,8r,11s,12s,15r,16r)-4,6-dihydroxy-15-[(2r,5s)-5-hydroxy-6-methyl-5-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)heptan-2-yl]-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylate

(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,3s,4s,6s,7s,8r,11s,12s,15r,16r)-4,6-dihydroxy-15-[(2r,5s)-5-hydroxy-6-methyl-5-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)heptan-2-yl]-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylate

C43H72O16 (844.4820112)


   

1-(7-{[5-({5-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-4-methoxy-6-methyloxan-2-yl]oxy}-2,3a,3b,10,11-pentahydroxy-9a,11a-dimethyl-1h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl)ethanone

1-(7-{[5-({5-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-4-methoxy-6-methyloxan-2-yl]oxy}-2,3a,3b,10,11-pentahydroxy-9a,11a-dimethyl-1h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl)ethanone

C42H68O17 (844.4456278)


   

(1s,4ar,6as,6br,8ar,10r,11r,12ar,12br,14bs)-10-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1,11-dihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(1s,4ar,6as,6br,8ar,10r,11r,12ar,12br,14bs)-10-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1,11-dihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C42H68O17 (844.4456278)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,3s,4s,6s,7s,8r,11s,12s,15r,16r)-4,6-dihydroxy-15-[(2r)-5-hydroxy-6-methyl-5-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)heptan-2-yl]-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,3s,4s,6s,7s,8r,11s,12s,15r,16r)-4,6-dihydroxy-15-[(2r)-5-hydroxy-6-methyl-5-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)heptan-2-yl]-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylate

C43H72O16 (844.4820112)


   

4a,6a-dimethyl (1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4s,5r,6r)-3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylate

4a,6a-dimethyl (1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4s,5r,6r)-3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylate

C46H68O14 (844.4608828)


   

4a,6a-dimethyl 1,2,6b,9,9,12a-hexamethyl-10-{[3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylate

4a,6a-dimethyl 1,2,6b,9,9,12a-hexamethyl-10-{[3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylate

C46H68O14 (844.4608828)


   

(2r)-2-{[(2e)-2-{[(2s)-2-{[(2r)-2-{[(2r)-5-carbamimidamido-1-hydroxy-2-{[(2r)-1-hydroxy-2-[(1-hydroxyethylidene)amino]-3-methylbutylidene]amino}pentylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-3-phenylpropylidene]amino}-1-hydroxybut-2-en-1-ylidene]amino}-3-(1h-indol-3-yl)propanoic acid

(2r)-2-{[(2e)-2-{[(2s)-2-{[(2r)-2-{[(2r)-5-carbamimidamido-1-hydroxy-2-{[(2r)-1-hydroxy-2-[(1-hydroxyethylidene)amino]-3-methylbutylidene]amino}pentylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-3-phenylpropylidene]amino}-1-hydroxybut-2-en-1-ylidene]amino}-3-(1h-indol-3-yl)propanoic acid

C43H60N10O8 (844.4595360000001)


   

(2s)-2-({[(3s,6s,9s,12s,15s)-3-benzyl-2,5,11,14-tetrahydroxy-6-(1h-indol-3-ylmethyl)-12-isopropyl-7-methyl-9-(2-methylpropyl)-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid

(2s)-2-({[(3s,6s,9s,12s,15s)-3-benzyl-2,5,11,14-tetrahydroxy-6-(1h-indol-3-ylmethyl)-12-isopropyl-7-methyl-9-(2-methylpropyl)-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid

C45H64N8O8 (844.4846864)


   

(4ar,5r,6as,6br,8ar,10r,11s,12ar,12br,14bs)-10-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,11-dihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4ar,5r,6as,6br,8ar,10r,11s,12ar,12br,14bs)-10-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,11-dihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C42H68O17 (844.4456278)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,3s,4s,6s,7s,8r,11s,12s,15r,16r)-4,6-dihydroxy-15-[(2r,5s)-5-hydroxy-6-methyl-5-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)heptan-2-yl]-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,3s,4s,6s,7s,8r,11s,12s,15r,16r)-4,6-dihydroxy-15-[(2r,5s)-5-hydroxy-6-methyl-5-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)heptan-2-yl]-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylate

C43H72O16 (844.4820112)


   

(4ar,5r,6as,6br,8ar,10r,11s,12ar,12br,14bs)-5,11-dihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4ar,5r,6as,6br,8ar,10r,11s,12ar,12br,14bs)-5,11-dihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C42H68O17 (844.4456278)


   

(2r)-2-{[(2e)-2-{[(2s)-2-{[(2r)-2-{[(2r)-5-carbamimidamido-1-hydroxy-2-{[(2r)-1-hydroxy-2-[(1-hydroxyethylidene)amino]-4-methylpentylidene]amino}pentylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-1-hydroxy-3-phenylpropylidene]amino}-1-hydroxybut-2-en-1-ylidene]amino}-3-(1h-indol-3-yl)propanoic acid

(2r)-2-{[(2e)-2-{[(2s)-2-{[(2r)-2-{[(2r)-5-carbamimidamido-1-hydroxy-2-{[(2r)-1-hydroxy-2-[(1-hydroxyethylidene)amino]-4-methylpentylidene]amino}pentylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-1-hydroxy-3-phenylpropylidene]amino}-1-hydroxybut-2-en-1-ylidene]amino}-3-(1h-indol-3-yl)propanoic acid

C43H60N10O8 (844.4595360000001)


   

n-[2-({4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl}oxy)-6-{2-[3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl}-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enimidic acid

n-[2-({4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl}oxy)-6-{2-[3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl}-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enimidic acid

C39H64N4O16 (844.4317103999999)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,3s,4s,6s,7s,8r,11s,12s,15r,16r)-4,6-dihydroxy-15-[(2r,5s)-5-hydroxy-6-methyl-5-({[(3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)heptan-2-yl]-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,3s,4s,6s,7s,8r,11s,12s,15r,16r)-4,6-dihydroxy-15-[(2r,5s)-5-hydroxy-6-methyl-5-({[(3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)heptan-2-yl]-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylate

C43H72O16 (844.4820112)


   

(2e)-n-[(2s,3r,4r,5r,6r)-2-{[(2s,3s,4s,5r,6s)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-6-[(2r)-2-[(2r,3s,4r,5r)-3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enimidic acid

(2e)-n-[(2s,3r,4r,5r,6r)-2-{[(2s,3s,4s,5r,6s)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-6-[(2r)-2-[(2r,3s,4r,5r)-3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enimidic acid

C39H64N4O16 (844.4317103999999)


   

11-{[3-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl}oxy)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}tetradecanoic acid

11-{[3-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl}oxy)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}tetradecanoic acid

C38H68O20 (844.4303728)


   

(2s,3s)-2-({[(3s,6s,9s,12s,15r)-3-benzyl-2,5,11,14-tetrahydroxy-6-(1h-indol-3-ylmethyl)-12-isopropyl-7-methyl-9-(2-methylpropyl)-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid

(2s,3s)-2-({[(3s,6s,9s,12s,15r)-3-benzyl-2,5,11,14-tetrahydroxy-6-(1h-indol-3-ylmethyl)-12-isopropyl-7-methyl-9-(2-methylpropyl)-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid

C45H64N8O8 (844.4846864)


   

(3s,9s,12s,15s,21s,24s,27s)-9-(4-aminobutyl)-11,14,23,26-tetrahydroxy-12,21-bis[(4-hydroxyphenyl)methyl]-24-isopropyl-1,7,10,13,19,22,25-heptaazatetracyclo[25.3.0.0³,⁷.0¹⁵,¹⁹]triaconta-10,13,22,25-tetraene-2,8,20-trione

(3s,9s,12s,15s,21s,24s,27s)-9-(4-aminobutyl)-11,14,23,26-tetrahydroxy-12,21-bis[(4-hydroxyphenyl)methyl]-24-isopropyl-1,7,10,13,19,22,25-heptaazatetracyclo[25.3.0.0³,⁷.0¹⁵,¹⁹]triaconta-10,13,22,25-tetraene-2,8,20-trione

C44H60N8O9 (844.448303)


   

(2s,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,3r,4s,6r,7r,8s,11r,12r,15s,16r)-4,6-dihydroxy-15-[(2r,5s)-5-hydroxy-6-methyl-5-({[(2r,3s,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)heptan-2-yl]-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylate

(2s,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,3r,4s,6r,7r,8s,11r,12r,15s,16r)-4,6-dihydroxy-15-[(2r,5s)-5-hydroxy-6-methyl-5-({[(2r,3s,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)heptan-2-yl]-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylate

C43H72O16 (844.4820112)


   

11-[(3-{[3-({3,5-dihydroxy-6-methyl-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl)oxy]tetradecanoic acid

11-[(3-{[3-({3,5-dihydroxy-6-methyl-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl)oxy]tetradecanoic acid

C38H68O20 (844.4303728)


   

9-(4-aminobutyl)-11,14,23,26-tetrahydroxy-12,21-bis[(4-hydroxyphenyl)methyl]-24-isopropyl-1,7,10,13,19,22,25-heptaazatetracyclo[25.3.0.0³,⁷.0¹⁵,¹⁹]triaconta-10,13,22,25-tetraene-2,8,20-trione

9-(4-aminobutyl)-11,14,23,26-tetrahydroxy-12,21-bis[(4-hydroxyphenyl)methyl]-24-isopropyl-1,7,10,13,19,22,25-heptaazatetracyclo[25.3.0.0³,⁷.0¹⁵,¹⁹]triaconta-10,13,22,25-tetraene-2,8,20-trione

C44H60N8O9 (844.448303)


   

4-[(1r,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,3r,4r,5s,6s)-5-hydroxy-6-methyl-3,4-bis({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,3r,4r,5s,6s)-5-hydroxy-6-methyl-3,4-bis({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C41H64O18 (844.4092444)


   

(2e)-n-[(2s,3r,4r,5r,6r)-2-{[(2r,3r,4r,5s,6r)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-6-[(2r)-2-[(2r,3s,4r,5r)-3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enimidic acid

(2e)-n-[(2s,3r,4r,5r,6r)-2-{[(2r,3r,4r,5s,6r)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-6-[(2r)-2-[(2r,3s,4r,5r)-3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enimidic acid

C39H64N4O16 (844.4317103999999)


   

[(3r,4r,5r,6s)-6-{[(1s,2s,5r,6s,9s,10s,13s,16s,18r)-5,10-dihydroxy-2,6,13,17,17-pentamethyl-6-(4-methylpent-3-en-1-yl)-8-oxo-7-oxapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icos-11-en-16-yl]oxy}-4-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxidanesulfonic acid

[(3r,4r,5r,6s)-6-{[(1s,2s,5r,6s,9s,10s,13s,16s,18r)-5,10-dihydroxy-2,6,13,17,17-pentamethyl-6-(4-methylpent-3-en-1-yl)-8-oxo-7-oxapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icos-11-en-16-yl]oxy}-4-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxidanesulfonic acid

C41H64O16S (844.3914864)


   

(2r,3s)-2-({[(3s,6s,9s,12s,15s)-3-benzyl-2,5,11,14-tetrahydroxy-6-(1h-indol-3-ylmethyl)-12-isopropyl-7-methyl-9-(2-methylpropyl)-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid

(2r,3s)-2-({[(3s,6s,9s,12s,15s)-3-benzyl-2,5,11,14-tetrahydroxy-6-(1h-indol-3-ylmethyl)-12-isopropyl-7-methyl-9-(2-methylpropyl)-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid

C45H64N8O8 (844.4846864)


   

(4ar,5r,6as,6br,8ar,10r,11s,12ar,12br,14bs)-5,11-dihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4ar,5r,6as,6br,8ar,10r,11s,12ar,12br,14bs)-5,11-dihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C42H68O17 (844.4456278)


   

(2e)-n-[(2s,3r,4r,5r,6r)-2-{[(3r,4r,5s,6r)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-6-[(2r)-2-[(2r,3s,4r,5r)-3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enimidic acid

(2e)-n-[(2s,3r,4r,5r,6r)-2-{[(3r,4r,5s,6r)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-6-[(2r)-2-[(2r,3s,4r,5r)-3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enimidic acid

C39H64N4O16 (844.4317103999999)


   

(11s)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6r)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}tetradecanoic acid

(11s)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6r)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}tetradecanoic acid

C38H68O20 (844.4303728)