Exact Mass: 842.4849874

Exact Mass Matches: 842.4849874

Found 471 metabolites which its exact mass value is equals to given mass value 842.4849874, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Vinaginsenoside R1

[6-({5,16-dihydroxy-14-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-8-yl}oxy)-3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]methyl acetic acid

C44H74O15 (842.5027454)


Vinaginsenoside R1 is a constituent of Panax vietnamensis (Vietnamese gingseng) Constituent of Panax vietnamensis (Vietnamese gingseng)

   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphinic acid

C48H75O10P (842.509758)


PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

PG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphinic acid

C48H75O10P (842.509758)


PG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphinic acid

C48H75O10P (842.509758)


PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylglycerol. Phosphatidylglycerols consist of a glycerol 3-phosphate backbone esterified to either saturated or unsaturated fatty acids on carbons 1 and 2. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl chain to the C-1 atom, and one 5Z,8Z,11Z,14Z-eicosatetraenoyl to the C-2 atom. In E. coli glycerophospholipid metabolism, phosphatidylglycerol is formed from phosphatidic acid (1,2-diacyl-sn-glycerol 3-phosphate) by a sequence of enzymatic reactions that proceeds via two intermediates, cytidine diphosphate diacylglycerol (CDP-diacylglycerol) and phosphatidylglycerophosphate (PGP, a phosphorylated phosphatidylglycerol). Phosphatidylglycerols, along with CDP-diacylglycerol, also serve as precursor molecules for the synthesis of cardiolipin, a phospholipid found in membranes.

   

Formacidine

2-[6-({5-[(4,5-dihydroxy-4,6-dimethyloxan-2-yl)oxy]-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl}oxy)-10-{[5-(dimethylamino)-6-methyloxan-2-yl]oxy}-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

C43H74N2O14 (842.5139784)


   

PA(22:2(13Z,16Z)/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]propoxy]phosphonic acid

C45H79O12P (842.5308864)


PA(22:2(13Z,16Z)/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:2(13Z,16Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 13Z,16Z-docosadienoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/22:2(13Z,16Z))

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]propoxy]phosphonic acid

C45H79O12P (842.5308864)


PA(6 keto-PGF1alpha/22:2(13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/22:2(13Z,16Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:2(13Z,16Z)/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]propoxy]phosphonic acid

C45H79O12P (842.5308864)


PA(22:2(13Z,16Z)/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:2(13Z,16Z)/TXB2), in particular, consists of one chain of one 13Z,16Z-docosadienoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/22:2(13Z,16Z))

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]propoxy]phosphonic acid

C45H79O12P (842.5308864)


PA(TXB2/22:2(13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/22:2(13Z,16Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(11Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(18:1(11Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(11Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:1(11Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:1(11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:1(11Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(18:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:1(9Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:1(9Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:1(9Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:2(9Z,11Z)/PGE2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(18:2(9Z,11Z)/PGE2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(9Z,11Z)/PGE2), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGE2/18:2(9Z,11Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(PGE2/18:2(9Z,11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGE2/18:2(9Z,11Z)), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:2(9Z,11Z)/PGD2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(18:2(9Z,11Z)/PGD2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(9Z,11Z)/PGD2), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGD2/18:2(9Z,11Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(PGD2/18:2(9Z,11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGD2/18:2(9Z,11Z)), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:2(9Z,11Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(18:2(9Z,11Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(9Z,11Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:2(9Z,11Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:2(9Z,11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:2(9Z,11Z)), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:2(9Z,12Z)/PGE2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(18:2(9Z,12Z)/PGE2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(9Z,12Z)/PGE2), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGE2/18:2(9Z,12Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(PGE2/18:2(9Z,12Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGE2/18:2(9Z,12Z)), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:2(9Z,12Z)/PGD2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(18:2(9Z,12Z)/PGD2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(9Z,12Z)/PGD2), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGD2/18:2(9Z,12Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(PGD2/18:2(9Z,12Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGD2/18:2(9Z,12Z)), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:2(9Z,12Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(18:2(9Z,12Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(9Z,12Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:2(9Z,12Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:2(9Z,12Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:2(9Z,12Z)), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(6Z,9Z,12Z)/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H75O13P (842.494503)


PG(18:3(6Z,9Z,12Z)/PGF2alpha) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(6Z,9Z,12Z)/PGF2alpha), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGF2alpha/18:3(6Z,9Z,12Z))

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H75O13P (842.494503)


PG(PGF2alpha/18:3(6Z,9Z,12Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGF2alpha/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(6Z,9Z,12Z)/PGE1)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(18:3(6Z,9Z,12Z)/PGE1) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(6Z,9Z,12Z)/PGE1), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGE1/18:3(6Z,9Z,12Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(PGE1/18:3(6Z,9Z,12Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGE1/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(6Z,9Z,12Z)/PGD1)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(18:3(6Z,9Z,12Z)/PGD1) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(6Z,9Z,12Z)/PGD1), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGD1/18:3(6Z,9Z,12Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(PGD1/18:3(6Z,9Z,12Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGD1/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(9Z,12Z,15Z)/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H75O13P (842.494503)


PG(18:3(9Z,12Z,15Z)/PGF2alpha) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(9Z,12Z,15Z)/PGF2alpha), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGF2alpha/18:3(9Z,12Z,15Z))

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H75O13P (842.494503)


PG(PGF2alpha/18:3(9Z,12Z,15Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGF2alpha/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(9Z,12Z,15Z)/PGE1)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(18:3(9Z,12Z,15Z)/PGE1) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(9Z,12Z,15Z)/PGE1), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGE1/18:3(9Z,12Z,15Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(PGE1/18:3(9Z,12Z,15Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGE1/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(9Z,12Z,15Z)/PGD1)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(18:3(9Z,12Z,15Z)/PGD1) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(9Z,12Z,15Z)/PGD1), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGD1/18:3(9Z,12Z,15Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C44H75O13P (842.494503)


PG(PGD1/18:3(9Z,12Z,15Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGD1/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(5Z,8Z,11Z)/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H75O13P (842.494503)


PG(20:3(5Z,8Z,11Z)/5-iso PGF2VI) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(5Z,8Z,11Z)/5-iso PGF2VI), in particular, consists of one chain of one 5Z,8Z,11Z-eicosatrienoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(5-iso PGF2VI/20:3(5Z,8Z,11Z))

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H75O13P (842.494503)


PG(5-iso PGF2VI/20:3(5Z,8Z,11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(5-iso PGF2VI/20:3(5Z,8Z,11Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(8Z,11Z,14Z)/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H75O13P (842.494503)


PG(20:3(8Z,11Z,14Z)/5-iso PGF2VI) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(8Z,11Z,14Z)/5-iso PGF2VI), in particular, consists of one chain of one 8Z,11Z,14Z-eicosatrienoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(5-iso PGF2VI/20:3(8Z,11Z,14Z))

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H75O13P (842.494503)


PG(5-iso PGF2VI/20:3(8Z,11Z,14Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(5-iso PGF2VI/20:3(8Z,11Z,14Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-19:0/PGJ2)

PG(i-19:0/PGJ2)

C45H79O12P (842.5308864)


PG(i-19:0/PGJ2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-19:0/PGJ2), in particular, consists of one chain of one 17-methyloctadecanoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGJ2/i-19:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-[(17-methyloctadecanoyl)oxy]propoxy]phosphinic acid

C45H79O12P (842.5308864)


PG(PGJ2/i-19:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGJ2/i-19:0), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 17-methyloctadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PGP(16:0/18:1(12Z)-O(9S,10R))

[(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H76O14P2 (842.4710056)


PGP(16:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(12Z)-O(9S,10R)/16:0)

[(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H76O14P2 (842.4710056)


PGP(18:1(12Z)-O(9S,10R)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-O(9S,10R)/16:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:0/18:1(9Z)-O(12,13))

[(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H76O14P2 (842.4710056)


PGP(16:0/18:1(9Z)-O(12,13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(9Z)-O(12,13)/16:0)

[(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H76O14P2 (842.4710056)


PGP(18:1(9Z)-O(12,13)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)-O(12,13)/16:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/18:1(12Z)-O(9S,10R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(14-methylpentadecanoyl)oxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H76O14P2 (842.4710056)


PGP(i-16:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(12Z)-O(9S,10R)/i-16:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(14-methylpentadecanoyl)oxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H76O14P2 (842.4710056)


PGP(18:1(12Z)-O(9S,10R)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-O(9S,10R)/i-16:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/18:1(9Z)-O(12,13))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(14-methylpentadecanoyl)oxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H76O14P2 (842.4710056)


PGP(i-16:0/18:1(9Z)-O(12,13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(9Z)-O(12,13)/i-16:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(14-methylpentadecanoyl)oxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H76O14P2 (842.4710056)


PGP(18:1(9Z)-O(12,13)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)-O(12,13)/i-16:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   
   
   
   
   
   
   

Spiramycin I

Spiramycin I

C43H74N2O14 (842.5139784)


A macrolide antibiotic produced by various Streptomyces species that is used to treat toxoplasmosis and various other infections of soft tissues.

   

Phosphatidylglyceride 20:4-22:6

Phosphatidylglyceride 20:4-22:6

C48H75O10P (842.509758)


   

PG 42:10

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H75O10P (842.509758)


Found in mouse small intestine; TwoDicalId=143; MgfFile=160907_Small_Intestine_AA_Neg_18; MgfId=680

   

(23R,24S)-24-acetoxy-3-O-alpha-L-arabinopyranosyloxy-16,23-epoxy-9,19-cyclolanostane-15alpha,16xi,25-triol 15-O-beta-D-glucopyranoside

(23R,24S)-24-acetoxy-3-O-alpha-L-arabinopyranosyloxy-16,23-epoxy-9,19-cyclolanostane-15alpha,16xi,25-triol 15-O-beta-D-glucopyranoside

C43H70O16 (842.466362)


   
   

(25S)-5alpha-spirostane-1beta,3alpha-diol 1-O-{O-alpha-L-rhamnopyranosyl-(1 -> 2)-O-[beta-D-xylopyranosyl-(1 -> 3)]-beta-D-xylopyranoside}

(25S)-5alpha-spirostane-1beta,3alpha-diol 1-O-{O-alpha-L-rhamnopyranosyl-(1 -> 2)-O-[beta-D-xylopyranosyl-(1 -> 3)]-beta-D-xylopyranoside}

C43H70O16 (842.466362)


   
   

3-O-{[??-D-Xylopyranosyl(1鈥樏傗垎4)][??-L-arabinopyranosyl(1鈥樏傗垎6)]-??-D-glucopyranosyl}-(25S)-5??-spirostan-3??-ol

3-O-{[??-D-Xylopyranosyl(1鈥樏傗垎4)][??-L-arabinopyranosyl(1鈥樏傗垎6)]-??-D-glucopyranosyl}-(25S)-5??-spirostan-3??-ol

C43H70O16 (842.466362)


   

(25S)-5beta-spirostane-3beta-ol 3-O-beta-D-xylopyranosyl-(1->2)-[beta-D-xylopyranosyl-(1->4)]-beta-D-glucopyranoside

(25S)-5beta-spirostane-3beta-ol 3-O-beta-D-xylopyranosyl-(1->2)-[beta-D-xylopyranosyl-(1->4)]-beta-D-glucopyranoside

C43H70O16 (842.466362)


   

Adda-D-Glu(gamma)-Mdhb-D-MeAsp(beta)-L-Arg-OH

Adda-D-Glu(gamma)-Mdhb-D-MeAsp(beta)-L-Arg-OH

C41H62N8O11 (842.4537822)


   

(25S)-5beta-spirostan-3beta-yl-3-O-beta-D-xylopyranosyl(1?3)-O-beta-D-xylopyranosyl(1?4)-beta-D-galactopyranoside

(25S)-5beta-spirostan-3beta-yl-3-O-beta-D-xylopyranosyl(1?3)-O-beta-D-xylopyranosyl(1?4)-beta-D-galactopyranoside

C43H70O16 (842.466362)


   

cyclo-(Pro-Gly-Ile-Phe-Thr-Ile-Ile-Thr)|gypsophin C

cyclo-(Pro-Gly-Ile-Phe-Thr-Ile-Ile-Thr)|gypsophin C

C42H66N8O10 (842.4901656000001)


   

3,3-bis[(E)-3,7-dimethylocta-2,6-dienyl]-9,9-dimethoxy-3,3,5,5,11-pentamethyl-3,3,11,11-tetrahydro-8,10-bipyrano[3,2-a]carbazole|bisgerayafoline C

3,3-bis[(E)-3,7-dimethylocta-2,6-dienyl]-9,9-dimethoxy-3,3,5,5,11-pentamethyl-3,3,11,11-tetrahydro-8,10-bipyrano[3,2-a]carbazole|bisgerayafoline C

C57H66N2O4 (842.5022316000001)


   
   

Methyl 3-O-??-laminaribiosyl polygalacate

Methyl 3-O-??-laminaribiosyl polygalacate

C43H70O16 (842.466362)


   

Astrasieversianin VIII

Astrasieversianin VIII

C44H74O15 (842.5027454)


   

Astrasieversianin VII

Astrasieversianin VII

C44H74O15 (842.5027454)


   

Spiramycin

2-[(4S,5R,6R,7S,9S,10S,11E,13E,16S)-6-[5-(4,5-dihydroxy-4,6-dimethyloxan-2-yl)oxy-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-10-[5-(dimethylamino)-6-methyloxan-2-yl]oxy-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

C43H74N2O14 (842.5139784)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007933 - Leucomycins relative retention time with respect to 9-anthracene Carboxylic Acid is 0.740 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.737 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.736 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3077 Spiramycin (Rovamycin) is a macrolide antibiotic produced by Streptomyces ambofaciens with against bacteria and Toxoplasma gondii activities, and also has antiparasitic effect. Spiramycin is composed of a 16-member lactone ring, on which three sugars (mycaminose, forosamine, and mycarose) are attached[1][2]. Spiramycin I is a macrolide antibiotic and antiparasitic[1].

   
   
   
   

PG(18:0/22:6)

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H75O10P (842.509758)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z))

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H75O10P (842.509758)


   

PI(15:0/20:5(5Z,8Z,11Z,14Z,17Z))

1-pentadecanoyl-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H75O13P (842.494503)


   

PI(15:1(9Z)/20:4(5Z,8Z,11Z,14Z))

1-(9Z-pentadecenoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H75O13P (842.494503)


   

PI(17:1(9Z)/18:4(6Z,9Z,12Z,15Z))

1-(9Z-heptadecenoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H75O13P (842.494503)


   

PI(17:2(9Z,12Z)/18:3(6Z,9Z,12Z))

1-(9Z,12Z-heptadecadienoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phospho-(1-myo-inositol)

C44H75O13P (842.494503)


   

PI(17:2(9Z,12Z)/18:3(9Z,12Z,15Z))

1-(9Z,12Z-heptadecadienoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phospho-(1-myo-inositol)

C44H75O13P (842.494503)


   

PI(18:3(6Z,9Z,12Z)/17:2(9Z,12Z))

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-myo-inositol)

C44H75O13P (842.494503)


   

PI(18:3(9Z,12Z,15Z)/17:2(9Z,12Z))

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-myo-inositol)

C44H75O13P (842.494503)


   

PI(18:4(6Z,9Z,12Z,15Z)/17:1(9Z))

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H75O13P (842.494503)


   

PI(20:4(5Z,8Z,11Z,14Z)/15:1(9Z))

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H75O13P (842.494503)


   

PI(20:5(5Z,8Z,11Z,14Z,17Z)/15:0)

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-pentadecanoyl-glycero-3-phospho-(1-myo-inositol)

C44H75O13P (842.494503)


   

PI(O-16:0/20:5(5Z,8Z,11Z,14Z,17Z))

1-hexadecyl-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H79O12P (842.5308864)


   

PI(P-18:0/18:4(6Z,9Z,12Z,15Z))

1-(1Z-octadecenyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H79O12P (842.5308864)


   

PI(P-16:0/20:4(5Z,8Z,11Z,14Z))

1-(1Z-hexadecenyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H79O12P (842.5308864)


   

Vinaginsenoside R1

[6-({5,16-dihydroxy-14-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-8-yl}oxy)-3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]methyl acetate

C44H74O15 (842.5027454)


   

PI 35:5

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-myo-inositol)

C44H75O13P (842.494503)


   

PI O-36:5

1-(1Z-octadecenyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H79O12P (842.5308864)


   
   

histidyl-arginyl-alanyl-tryptophyl-phenylalanyl-lysinamide

histidyl-arginyl-alanyl-tryptophyl-phenylalanyl-lysinamide

C41H58N14O6 (842.4663528000001)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C48H75O10P (842.509758)


   
   
   

PG(18:2(9Z,11Z)/PGE2)

PG(18:2(9Z,11Z)/PGE2)

C44H75O13P (842.494503)


   

PG(PGE2/18:2(9Z,11Z))

PG(PGE2/18:2(9Z,11Z))

C44H75O13P (842.494503)


   

PG(18:2(9Z,11Z)/PGD2)

PG(18:2(9Z,11Z)/PGD2)

C44H75O13P (842.494503)


   

PG(PGD2/18:2(9Z,11Z))

PG(PGD2/18:2(9Z,11Z))

C44H75O13P (842.494503)


   

PG(18:2(9Z,12Z)/PGE2)

PG(18:2(9Z,12Z)/PGE2)

C44H75O13P (842.494503)


   

PG(PGE2/18:2(9Z,12Z))

PG(PGE2/18:2(9Z,12Z))

C44H75O13P (842.494503)


   

PG(18:2(9Z,12Z)/PGD2)

PG(18:2(9Z,12Z)/PGD2)

C44H75O13P (842.494503)


   

PG(PGD2/18:2(9Z,12Z))

PG(PGD2/18:2(9Z,12Z))

C44H75O13P (842.494503)


   

PG(18:3(6Z,9Z,12Z)/PGF2alpha)

PG(18:3(6Z,9Z,12Z)/PGF2alpha)

C44H75O13P (842.494503)


   

PG(PGF2alpha/18:3(6Z,9Z,12Z))

PG(PGF2alpha/18:3(6Z,9Z,12Z))

C44H75O13P (842.494503)


   

PA(22:2(13Z,16Z)/TXB2)

PA(22:2(13Z,16Z)/TXB2)

C45H79O12P (842.5308864)


   

PA(TXB2/22:2(13Z,16Z))

PA(TXB2/22:2(13Z,16Z))

C45H79O12P (842.5308864)


   

PG(18:3(9Z,12Z,15Z)/PGF2alpha)

PG(18:3(9Z,12Z,15Z)/PGF2alpha)

C44H75O13P (842.494503)


   

PG(PGF2alpha/18:3(9Z,12Z,15Z))

PG(PGF2alpha/18:3(9Z,12Z,15Z))

C44H75O13P (842.494503)


   

PA(22:2(13Z,16Z)/6 keto-PGF1alpha)

PA(22:2(13Z,16Z)/6 keto-PGF1alpha)

C45H79O12P (842.5308864)


   

PA(6 keto-PGF1alpha/22:2(13Z,16Z))

PA(6 keto-PGF1alpha/22:2(13Z,16Z))

C45H79O12P (842.5308864)


   

PG(18:3(6Z,9Z,12Z)/PGE1)

PG(18:3(6Z,9Z,12Z)/PGE1)

C44H75O13P (842.494503)


   

PG(PGE1/18:3(6Z,9Z,12Z))

PG(PGE1/18:3(6Z,9Z,12Z))

C44H75O13P (842.494503)


   

PG(18:3(6Z,9Z,12Z)/PGD1)

PG(18:3(6Z,9Z,12Z)/PGD1)

C44H75O13P (842.494503)


   

PG(PGD1/18:3(6Z,9Z,12Z))

PG(PGD1/18:3(6Z,9Z,12Z))

C44H75O13P (842.494503)


   

PG(18:3(9Z,12Z,15Z)/PGE1)

PG(18:3(9Z,12Z,15Z)/PGE1)

C44H75O13P (842.494503)


   

PG(PGE1/18:3(9Z,12Z,15Z))

PG(PGE1/18:3(9Z,12Z,15Z))

C44H75O13P (842.494503)


   

PG(18:3(9Z,12Z,15Z)/PGD1)

PG(18:3(9Z,12Z,15Z)/PGD1)

C44H75O13P (842.494503)


   

PG(PGD1/18:3(9Z,12Z,15Z))

PG(PGD1/18:3(9Z,12Z,15Z))

C44H75O13P (842.494503)


   

PG(20:3(5Z,8Z,11Z)/5-iso PGF2VI)

PG(20:3(5Z,8Z,11Z)/5-iso PGF2VI)

C44H75O13P (842.494503)


   

PG(5-iso PGF2VI/20:3(5Z,8Z,11Z))

PG(5-iso PGF2VI/20:3(5Z,8Z,11Z))

C44H75O13P (842.494503)


   

PG(20:3(8Z,11Z,14Z)/5-iso PGF2VI)

PG(20:3(8Z,11Z,14Z)/5-iso PGF2VI)

C44H75O13P (842.494503)


   

PG(5-iso PGF2VI/20:3(8Z,11Z,14Z))

PG(5-iso PGF2VI/20:3(8Z,11Z,14Z))

C44H75O13P (842.494503)


   

PGP(16:0/18:1(12Z)-O(9S,10R))

PGP(16:0/18:1(12Z)-O(9S,10R))

C40H76O14P2 (842.4710056)


   

PGP(18:1(12Z)-O(9S,10R)/16:0)

PGP(18:1(12Z)-O(9S,10R)/16:0)

C40H76O14P2 (842.4710056)


   

PGP(i-16:0/18:1(12Z)-O(9S,10R))

PGP(i-16:0/18:1(12Z)-O(9S,10R))

C40H76O14P2 (842.4710056)


   

PGP(18:1(12Z)-O(9S,10R)/i-16:0)

PGP(18:1(12Z)-O(9S,10R)/i-16:0)

C40H76O14P2 (842.4710056)


   

PGP(i-16:0/18:1(9Z)-O(12,13))

PGP(i-16:0/18:1(9Z)-O(12,13))

C40H76O14P2 (842.4710056)


   

PGP(18:1(9Z)-O(12,13)/i-16:0)

PGP(18:1(9Z)-O(12,13)/i-16:0)

C40H76O14P2 (842.4710056)


   

PGP(16:0/18:1(9Z)-O(12,13))

PGP(16:0/18:1(9Z)-O(12,13))

C40H76O14P2 (842.4710056)


   

PGP(18:1(9Z)-O(12,13)/16:0)

PGP(18:1(9Z)-O(12,13)/16:0)

C40H76O14P2 (842.4710056)


   

PG(18:1(11Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PG(18:1(11Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C44H75O13P (842.494503)


   

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:1(11Z))

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:1(11Z))

C44H75O13P (842.494503)


   

PG(18:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PG(18:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C44H75O13P (842.494503)


   

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:1(9Z))

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:1(9Z))

C44H75O13P (842.494503)


   

PG(18:2(9Z,11Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PG(18:2(9Z,11Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C44H75O13P (842.494503)


   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:2(9Z,11Z))

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:2(9Z,11Z))

C44H75O13P (842.494503)


   

PG(18:2(9Z,12Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PG(18:2(9Z,12Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C44H75O13P (842.494503)


   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:2(9Z,12Z))

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:2(9Z,12Z))

C44H75O13P (842.494503)


   

2-[hydroxy-[(2R)-2-[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[[(2R)-2-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-3-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-3-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H77NO12P+ (842.5183112)


   

2-[[(2R)-3-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H77NO12P+ (842.5183112)


   

2-[(4R,5S,6S,7R,9R,10R,11E,13Z,16S)-6-[(2S,3R,4R,5S,6R)-5-[(2S,4R,5R,6S)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-10-[(2R,5S,6R)-5-(dimethylamino)-6-methyloxan-2-yl]oxy-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

2-[(4R,5S,6S,7R,9R,10R,11E,13Z,16S)-6-[(2S,3R,4R,5S,6R)-5-[(2S,4R,5R,6S)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-10-[(2R,5S,6R)-5-(dimethylamino)-6-methyloxan-2-yl]oxy-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

C43H74N2O14 (842.5139784)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] decanoate

[1-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] decanoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C45H79O12P (842.5308864)


   

[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] hexadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] hexadecanoate

C45H79O12P (842.5308864)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

C45H79O12P (842.5308864)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C45H79O12P (842.5308864)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] octadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] octadecanoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (Z)-octadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (Z)-octadec-9-enoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (Z)-hexadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (Z)-hexadec-9-enoate

C45H79O12P (842.5308864)


   

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecoxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecoxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C45H79O12P (842.5308864)


   

[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tetradecanoate

[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tetradecanoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C45H79O12P (842.5308864)


   

[1-dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C45H79O12P (842.5308864)


   

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] dodecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] dodecanoate

C45H79O12P (842.5308864)


   

[1-hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecoxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecoxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H79O12P (842.5308864)


   
   

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C44H74O15 (842.5027454)


   

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C44H74O15 (842.5027454)


   

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C44H74O15 (842.5027454)


   

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C44H74O15 (842.5027454)


   

[6-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[6-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[3,4,5-trihydroxy-6-[3-octadecanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[3-octadecanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[6-[2,3-bis[[(9Z,12Z)-octadeca-9,12-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2,3-bis[[(9Z,12Z)-octadeca-9,12-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[6-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[6-[3-dodecanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-dodecanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[6-[3-hexadecanoyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-hexadecanoyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[3,4,5-trihydroxy-6-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C44H74O15 (842.5027454)


   

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C44H74O15 (842.5027454)


   

[6-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C44H74O15 (842.5027454)


   

[6-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[6-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[6-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-icos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-icos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C48H75O10P (842.509758)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C48H75O10P (842.509758)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (4E,8E,10E,12Z,14E,19Z)-7,16,17-trihydroxydocosa-4,8,10,12,14,19-hexaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (4E,8E,10E,12Z,14E,19Z)-7,16,17-trihydroxydocosa-4,8,10,12,14,19-hexaenoate

C44H75O13P (842.494503)


   

[1-[(Z)-heptadec-9-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[(Z)-heptadec-9-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C44H75O13P (842.494503)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C44H75O13P (842.494503)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C48H75O10P (842.509758)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate

C44H75O13P (842.494503)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C44H75O13P (842.494503)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C44H75O13P (842.494503)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-nonadec-9-enoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-nonadec-9-enoate

C44H75O13P (842.494503)


   

[1-heptadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-heptadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C44H75O13P (842.494503)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C44H75O13P (842.494503)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C44H75O13P (842.494503)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (6E,8Z,10E,14Z,16E)-5,12,18-trihydroxyicosa-6,8,10,14,16-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (6E,8Z,10E,14Z,16E)-5,12,18-trihydroxyicosa-6,8,10,14,16-pentaenoate

C44H75O13P (842.494503)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-2-dodecanoyloxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-dodecanoyloxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-dodecanoyloxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-dodecanoyloxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C44H75O13P (842.494503)


   

[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C44H75O13P (842.494503)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2S)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C44H75O13P (842.494503)


   

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[1-[(E)-tridec-8-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[(E)-tridec-8-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C44H74O15 (842.5027454)


   

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C44H75O13P (842.494503)


   
   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C48H75O10P (842.509758)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C44H75O13P (842.494503)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C44H74O15 (842.5027454)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C44H75O13P (842.494503)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   
   

[1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

[1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

C44H74O15 (842.5027454)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-nonadec-9-enoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-nonadec-9-enoate

C44H75O13P (842.494503)


   

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C44H74O15 (842.5027454)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C44H75O13P (842.494503)


   

[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C48H75O10P (842.509758)


   
   
   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(9E,11E)-octadeca-9,11-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(9E,11E)-octadeca-9,11-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C44H75O13P (842.494503)


   

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C44H74O15 (842.5027454)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(9E,12E)-octadeca-9,12-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(9E,12E)-octadeca-9,12-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C48H75O10P (842.509758)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   
   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   
   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(2E,4E)-octadeca-2,4-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(2E,4E)-octadeca-2,4-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C48H75O10P (842.509758)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C44H75O13P (842.494503)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C48H75O10P (842.509758)


   

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] nonadecanoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] nonadecanoate

C44H75O13P (842.494503)


   

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C44H75O13P (842.494503)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C48H75O10P (842.509758)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C44H75O13P (842.494503)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C44H75O13P (842.494503)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C44H75O13P (842.494503)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C44H75O13P (842.494503)


   

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(6E,9E)-octadeca-6,9-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(6E,9E)-octadeca-6,9-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoate

C48H75O10P (842.509758)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   
   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C44H75O13P (842.494503)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C48H75O10P (842.509758)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2S)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C44H75O13P (842.494503)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,9E)-nonadeca-7,9-dienoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,9E)-nonadeca-7,9-dienoate

C44H75O13P (842.494503)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C44H74O15 (842.5027454)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C44H75O13P (842.494503)


   

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (10E,13E,16E)-nonadeca-10,13,16-trienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (10E,13E,16E)-nonadeca-10,13,16-trienoate

C44H75O13P (842.494503)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C48H75O10P (842.509758)


   

[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoate

C48H75O10P (842.509758)


   
   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   
   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C48H75O10P (842.509758)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C44H75O13P (842.494503)


   

PG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C48H75O10P (842.509758)


   

SQDG(36:4)

SQDG(18:1_18:3)

C45H78O12S (842.5213708)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PI P-14:0/22:4 or PI O-14:1/22:4

PI P-14:0/22:4 or PI O-14:1/22:4

C45H79O12P (842.5308864)


   
   

PI P-16:0/20:4 or PI O-16:1/20:4

PI P-16:0/20:4 or PI O-16:1/20:4

C45H79O12P (842.5308864)


   
   

PI P-16:1/20:3 or PI O-16:2/20:3

PI P-16:1/20:3 or PI O-16:2/20:3

C45H79O12P (842.5308864)


   
   

PI P-18:0/18:4 or PI O-18:1/18:4

PI P-18:0/18:4 or PI O-18:1/18:4

C45H79O12P (842.5308864)


   
   

PI P-18:1/18:3 or PI O-18:2/18:3

PI P-18:1/18:3 or PI O-18:2/18:3

C45H79O12P (842.5308864)


   
   

PI P-36:4 or PI O-36:5

PI P-36:4 or PI O-36:5

C45H79O12P (842.5308864)


   
   
   
   
   
   
   

DGDG(29:4)

DGDG(18:1_11:3)

C44H74O15 (842.5027454)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

(2e,7r,11r)-3,7,11,15-tetramethylhexadec-2-en-1-yl 3-[(22s,23r)-17-ethenyl-12-ethyl-13,18,22,27-tetramethyl-3,5-dioxo-4-oxa-8,24,25,26-tetraazahexacyclo[19.2.1.1⁶,⁹.1¹¹,¹⁴.1¹⁶,¹⁹.0²,⁷]heptacosa-1(24),2(7),6(27),9,11(26),12,14,16,18,20-decaen-23-yl]propanoate

(2e,7r,11r)-3,7,11,15-tetramethylhexadec-2-en-1-yl 3-[(22s,23r)-17-ethenyl-12-ethyl-13,18,22,27-tetramethyl-3,5-dioxo-4-oxa-8,24,25,26-tetraazahexacyclo[19.2.1.1⁶,⁹.1¹¹,¹⁴.1¹⁶,¹⁹.0²,⁷]heptacosa-1(24),2(7),6(27),9,11(26),12,14,16,18,20-decaen-23-yl]propanoate

C53H70N4O5 (842.534593)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-1-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-1-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl acetate

C44H74O15 (842.5027454)


   

2-[(4r,5s,6s,7r,9r,10r,11e,13e,16r)-6-{[(2s,3r,4r,5s,6r)-5-{[(2s,4r,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-10-{[(2r,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy}-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

2-[(4r,5s,6s,7r,9r,10r,11e,13e,16r)-6-{[(2s,3r,4r,5s,6r)-5-{[(2s,4r,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-10-{[(2r,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy}-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

C43H74N2O14 (842.5139784)


   

2-[(4r,5s,6s,7r,9r,11e,13e,16r)-6-{[(2r,3r,4r,5s,6r)-5-{[(2s,4r,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-10-{[(2r,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy}-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

2-[(4r,5s,6s,7r,9r,11e,13e,16r)-6-{[(2r,3r,4r,5s,6r)-5-{[(2s,4r,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-10-{[(2r,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy}-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

C43H74N2O14 (842.5139784)


   

16,23-epoxycycloartane-3,15,16,24,25-pentol; (3β,15α,16αoh,23r,24r)-form,24-ac,3-o-beta-d-lyxopyranoside,15-o-beta-d-glucopyranoside

NA

C43H70O16 (842.466362)


{"Ingredient_id": "HBIN001764","Ingredient_name": "16,23-epoxycycloartane-3,15,16,24,25-pentol; (3\u03b2,15\u03b1,16\u03b1oh,23r,24r)-form,24-ac,3-o-beta-d-lyxopyranoside,15-o-beta-d-glucopyranoside","Alias": "NA","Ingredient_formula": "C43H70O16","Ingredient_Smile": "NA","Ingredient_weight": "843.01","OB_score": "NA","CAS_id": "158059-08-6","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "9277","PubChem_id": "NA","DrugBank_id": "NA"}

   

16,23-epoxycycloartane-3,15,16,24,25-pentol; (3β,15α,16αoh,23r,24r)-form,24-ac,3-o-beta-d-xylopyranoside,15-o-beta-d-glucopyranoside

NA

C43H70O16 (842.466362)


{"Ingredient_id": "HBIN001765","Ingredient_name": "16,23-epoxycycloartane-3,15,16,24,25-pentol; (3\u03b2,15\u03b1,16\u03b1oh,23r,24r)-form,24-ac,3-o-beta-d-xylopyranoside,15-o-beta-d-glucopyranoside","Alias": "NA","Ingredient_formula": "C43H70O16","Ingredient_Smile": "NA","Ingredient_weight": "843.01","OB_score": "NA","CAS_id": "158059-07-5","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "9276","PubChem_id": "NA","DrugBank_id": "NA"}

   

16,23-epoxycycloartane-3,15,16,24,25-pentol; (3β,15α,16ξ,23r,24s)-form,24-ac,3-o-alpha-l-arabinopyranoside,15-o-beta-d-glucopyranoside

NA

C43H70O16 (842.466362)


{"Ingredient_id": "HBIN001766","Ingredient_name": "16,23-epoxycycloartane-3,15,16,24,25-pentol; (3\u03b2,15\u03b1,16\u03be,23r,24s)-form,24-ac,3-o-alpha-l-arabinopyranoside,15-o-beta-d-glucopyranoside","Alias": "NA","Ingredient_formula": "C43H70O16","Ingredient_Smile": "NA","Ingredient_weight": "843.01","OB_score": "NA","CAS_id": "155020-80-7","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "9275","PubChem_id": "NA","DrugBank_id": "NA"}

   

16,23-epoxycycloartane-3,15,16,24,25-pentol; (3β,15α,16ξ,23r,24s)-form,24-ac,3-o-beta-d-xylopyranoside,15-o-beta-d-glucopyranoside

NA

C43H70O16 (842.466362)


{"Ingredient_id": "HBIN001767","Ingredient_name": "16,23-epoxycycloartane-3,15,16,24,25-pentol; (3\u03b2,15\u03b1,16\u03be,23r,24s)-form,24-ac,3-o-beta-d-xylopyranoside,15-o-beta-d-glucopyranoside","Alias": "NA","Ingredient_formula": "C43H70O16","Ingredient_Smile": "NA","Ingredient_weight": "843.01","OB_score": "NA","CAS_id": "155020-81-8","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "9274","PubChem_id": "NA","DrugBank_id": "NA"}

   

3-o-{[β-d-xylopyranosyl(1→4)][α-l-arabino-pyranosyl(1→6)]-β-d-glucopyranosyl}-(25s)-5β-spirostan-3β-ol

NA

C43H70O16 (842.466362)


{"Ingredient_id": "HBIN009255","Ingredient_name": "3-o-{[\u03b2-d-xylopyranosyl(1\u21924)][\u03b1-l-arabino-pyranosyl(1\u21926)]-\u03b2-d-glucopyranosyl}-(25s)-5\u03b2-spirostan-3\u03b2-ol","Alias": "NA","Ingredient_formula": "C43H70O16","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "22805","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

aquilegioside f

NA

C43H70O16 (842.466362)


{"Ingredient_id": "HBIN016552","Ingredient_name": "aquilegioside f","Alias": "NA","Ingredient_formula": "C43H70O16","Ingredient_Smile": "CC1C(OC2(C1C3(CCC45CC46CCC(C(C6CCC5C3(C2)C)(C)C)OC7C(C(C(C(O7)CO)O)O)OC8C(C(C(C(O8)CO)O)O)O)C)OC)CC(=O)C(C)(CO)O","Ingredient_weight": "843 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1547","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "101243284","DrugBank_id": "NA"}

   

methyl (4ar,5r,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-10-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

methyl (4ar,5r,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-10-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C43H70O16 (842.466362)


   

2-{6-[(5-{[(4r)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl)oxy]-10-{[5-(dimethylamino)-6-methyloxan-2-yl]oxy}-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl}acetaldehyde

2-{6-[(5-{[(4r)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl)oxy]-10-{[5-(dimethylamino)-6-methyloxan-2-yl]oxy}-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl}acetaldehyde

C43H74N2O14 (842.5139784)


   

(3r,4s,5r)-2-{[(2r,3s,4s,5r)-4-hydroxy-2-(hydroxymethyl)-6-[(2r,4's,5s,7's,9's,13's,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}oxane-3,4,5-triol

(3r,4s,5r)-2-{[(2r,3s,4s,5r)-4-hydroxy-2-(hydroxymethyl)-6-[(2r,4's,5s,7's,9's,13's,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}oxane-3,4,5-triol

C43H70O16 (842.466362)


   

(2s)-2-{[(2s,3r)-3-{[(2z)-2-[(4r)-4-{[(2s,3s,4e,6e,8s,9s)-3-amino-1-hydroxy-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dien-1-ylidene]amino}-4-carboxy-n-methylbutanamido]-1-hydroxybut-2-en-1-ylidene]amino}-3-carboxy-1-hydroxy-2-methylpropylidene]amino}-5-carbamimidamidopentanoic acid

(2s)-2-{[(2s,3r)-3-{[(2z)-2-[(4r)-4-{[(2s,3s,4e,6e,8s,9s)-3-amino-1-hydroxy-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dien-1-ylidene]amino}-4-carboxy-n-methylbutanamido]-1-hydroxybut-2-en-1-ylidene]amino}-3-carboxy-1-hydroxy-2-methylpropylidene]amino}-5-carbamimidamidopentanoic acid

C41H62N8O11 (842.4537822)


   

(3s)-1-[(1s,4r,5r,6s,7s,9s,11s,12s,15r,17s,20r)-17-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-methoxy-4,6,11,16,16-pentamethyl-8-oxahexacyclo[10.9.0.0¹,²⁰.0⁴,¹¹.0⁵,⁹.0¹⁵,²⁰]henicosan-7-yl]-3,4-dihydroxy-3-methylbutan-2-one

(3s)-1-[(1s,4r,5r,6s,7s,9s,11s,12s,15r,17s,20r)-17-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-methoxy-4,6,11,16,16-pentamethyl-8-oxahexacyclo[10.9.0.0¹,²⁰.0⁴,¹¹.0⁵,⁹.0¹⁵,²⁰]henicosan-7-yl]-3,4-dihydroxy-3-methylbutan-2-one

C43H70O16 (842.466362)


   

(1r,5s,7r,9s,10s,11s,15s,17s,19s)-10-methyl-5,15-bis[(1s,2s)-2-methylcyclopropyl]-9,19-bis({[(2s,3r,4s,5r)-3,4,5-trimethoxyoxan-2-yl]oxy})-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

(1r,5s,7r,9s,10s,11s,15s,17s,19s)-10-methyl-5,15-bis[(1s,2s)-2-methylcyclopropyl]-9,19-bis({[(2s,3r,4s,5r)-3,4,5-trimethoxyoxan-2-yl]oxy})-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

C43H70O16 (842.466362)


   

(2s,3r,4s,5r)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5r)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}oxane-3,4,5-triol

C43H70O16 (842.466362)


   

(2s,3r,4s,5r)-2-{[(1r,2s,3as,3br,5s,5ar,7s,9as,9br,11ar)-2-hydroxy-1-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,6,6,9a,9b,11a-hexamethyl-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydrocyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxyoxan-3-yl acetate

(2s,3r,4s,5r)-2-{[(1r,2s,3as,3br,5s,5ar,7s,9as,9br,11ar)-2-hydroxy-1-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,6,6,9a,9b,11a-hexamethyl-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydrocyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxyoxan-3-yl acetate

C44H74O15 (842.5027454)


   

3,5-dihydroxy-2-({2-hydroxy-1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,6,6,9a,9b,11a-hexamethyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydrocyclopenta[a]phenanthren-7-yl}oxy)oxan-4-yl acetate

3,5-dihydroxy-2-({2-hydroxy-1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,6,6,9a,9b,11a-hexamethyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydrocyclopenta[a]phenanthren-7-yl}oxy)oxan-4-yl acetate

C44H74O15 (842.5027454)


   

(1s,5s,7s,9s,10s,11s,15s,17s,19s,20s)-9-{[(2s,3r,4r,5r)-3-hydroxy-4,5-dimethoxyoxan-2-yl]oxy}-10,20-dimethyl-5,15-bis[(1r,2r)-2-methylcyclopropyl]-19-{[(2s,3r,4s,5r)-3,4,5-trimethoxyoxan-2-yl]oxy}-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

(1s,5s,7s,9s,10s,11s,15s,17s,19s,20s)-9-{[(2s,3r,4r,5r)-3-hydroxy-4,5-dimethoxyoxan-2-yl]oxy}-10,20-dimethyl-5,15-bis[(1r,2r)-2-methylcyclopropyl]-19-{[(2s,3r,4s,5r)-3,4,5-trimethoxyoxan-2-yl]oxy}-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

C43H70O16 (842.466362)


   

2-[(hydroxymethylidene)amino]-3-methyl-n-{5,15,18-trihydroxy-10,20-diisopropyl-17-[(4-methoxyphenyl)methyl]-9,13-dimethyl-7-(2-methylpropyl)-8,11,21-trioxo-1h,2h,3h,4h,4ah,7h,10h,13h,14h,17h,20h-pyridazino[3,2-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-14-yl}butanimidic acid

2-[(hydroxymethylidene)amino]-3-methyl-n-{5,15,18-trihydroxy-10,20-diisopropyl-17-[(4-methoxyphenyl)methyl]-9,13-dimethyl-7-(2-methylpropyl)-8,11,21-trioxo-1h,2h,3h,4h,4ah,7h,10h,13h,14h,17h,20h-pyridazino[3,2-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-14-yl}butanimidic acid

C42H66N8O10 (842.4901656000001)


   

4,5-dihydroxy-2-({2-hydroxy-1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,6,6,9a,9b,11a-hexamethyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydrocyclopenta[a]phenanthren-7-yl}oxy)oxan-3-yl acetate

4,5-dihydroxy-2-({2-hydroxy-1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,6,6,9a,9b,11a-hexamethyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydrocyclopenta[a]phenanthren-7-yl}oxy)oxan-3-yl acetate

C44H74O15 (842.5027454)


   

(6-{[7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methyl-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl acetate

(6-{[7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methyl-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl acetate

C44H74O15 (842.5027454)


   

9-[(3-hydroxy-4,5-dimethoxyoxan-2-yl)oxy]-10,20-dimethyl-5,15-bis(2-methylcyclopropyl)-19-[(3,4,5-trimethoxyoxan-2-yl)oxy]-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

9-[(3-hydroxy-4,5-dimethoxyoxan-2-yl)oxy]-10,20-dimethyl-5,15-bis(2-methylcyclopropyl)-19-[(3,4,5-trimethoxyoxan-2-yl)oxy]-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

C43H70O16 (842.466362)


   

(1s)-2-hydroxy-1-[(1s,4r,5r,6r,8r,10s,11r,12s,13r,16r,18s,21r)-10-hydroxy-4,6,12,17,17-pentamethyl-11-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-18-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-yl]-2-methylpropyl acetate

(1s)-2-hydroxy-1-[(1s,4r,5r,6r,8r,10s,11r,12s,13r,16r,18s,21r)-10-hydroxy-4,6,12,17,17-pentamethyl-11-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-18-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-yl]-2-methylpropyl acetate

C43H70O16 (842.466362)


   

(11s)-11-{[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5r,6s)-5-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}hexadecanoic acid

(11s)-11-{[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5r,6s)-5-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}hexadecanoic acid

C39H70O19 (842.4511070000001)


   

(1s,5s,7s,9s,10s,11s,15s,17s,19s,20s)-9-{[(2s,3r,4r,5r)-5-hydroxy-3,4-dimethoxyoxan-2-yl]oxy}-10,20-dimethyl-5,15-bis[(1s,2s)-2-methylcyclopropyl]-19-{[(2r,3r,4s,5s)-3,4,5-trimethoxyoxan-2-yl]oxy}-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

(1s,5s,7s,9s,10s,11s,15s,17s,19s,20s)-9-{[(2s,3r,4r,5r)-5-hydroxy-3,4-dimethoxyoxan-2-yl]oxy}-10,20-dimethyl-5,15-bis[(1s,2s)-2-methylcyclopropyl]-19-{[(2r,3r,4s,5s)-3,4,5-trimethoxyoxan-2-yl]oxy}-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

C43H70O16 (842.466362)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-[(2s)-6-methyl-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-[(2s)-6-methyl-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C44H74O15 (842.5027454)


   

9-[(5-hydroxy-3,4-dimethoxyoxan-2-yl)oxy]-10,20-dimethyl-5,15-bis(2-methylcyclopropyl)-19-[(3,4,5-trimethoxyoxan-2-yl)oxy]-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

9-[(5-hydroxy-3,4-dimethoxyoxan-2-yl)oxy]-10,20-dimethyl-5,15-bis(2-methylcyclopropyl)-19-[(3,4,5-trimethoxyoxan-2-yl)oxy]-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

C43H70O16 (842.466362)


   

(1s,5s,7s,9s,10s,11s,15s,17s,19s,20s)-9-[(3-hydroxy-4,5-dimethoxyoxan-2-yl)oxy]-10,20-dimethyl-5,15-bis[(1s,2s)-2-methylcyclopropyl]-19-[(3,4,5-trimethoxyoxan-2-yl)oxy]-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

(1s,5s,7s,9s,10s,11s,15s,17s,19s,20s)-9-[(3-hydroxy-4,5-dimethoxyoxan-2-yl)oxy]-10,20-dimethyl-5,15-bis[(1s,2s)-2-methylcyclopropyl]-19-[(3,4,5-trimethoxyoxan-2-yl)oxy]-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

C43H70O16 (842.466362)


   

1-[(1s,4r,5r,6s,7s,9s,11s,12s,15r,17s,20r)-17-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-methoxy-4,6,11,16,16-pentamethyl-8-oxahexacyclo[10.9.0.0¹,²⁰.0⁴,¹¹.0⁵,⁹.0¹⁵,²⁰]henicosan-7-yl]-3,4-dihydroxy-3-methylbutan-2-one

1-[(1s,4r,5r,6s,7s,9s,11s,12s,15r,17s,20r)-17-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-methoxy-4,6,11,16,16-pentamethyl-8-oxahexacyclo[10.9.0.0¹,²⁰.0⁴,¹¹.0⁵,⁹.0¹⁵,²⁰]henicosan-7-yl]-3,4-dihydroxy-3-methylbutan-2-one

C43H70O16 (842.466362)


   

2-[(4,5-dihydroxy-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)methoxy]oxane-3,4,5-triol

2-[(4,5-dihydroxy-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)methoxy]oxane-3,4,5-triol

C43H70O16 (842.466362)


   

(1s,5s,7s,9s,10s,11s,15s,17s,19s,20s)-9-{[(2s,3r,4r,5r)-3-hydroxy-4,5-dimethoxyoxan-2-yl]oxy}-10,20-dimethyl-5,15-bis[(1s,2s)-2-methylcyclopropyl]-19-{[(2s,3r,4s,5r)-3,4,5-trimethoxyoxan-2-yl]oxy}-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

(1s,5s,7s,9s,10s,11s,15s,17s,19s,20s)-9-{[(2s,3r,4r,5r)-3-hydroxy-4,5-dimethoxyoxan-2-yl]oxy}-10,20-dimethyl-5,15-bis[(1s,2s)-2-methylcyclopropyl]-19-{[(2s,3r,4s,5r)-3,4,5-trimethoxyoxan-2-yl]oxy}-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

C43H70O16 (842.466362)


   

(1r,5s,7s,9s,10s,11s,15s,17s,19s)-10-methyl-5,15-bis[(1s,2s)-2-methylcyclopropyl]-9,19-bis({[(2s,3r,4s,5r)-3,4,5-trimethoxyoxan-2-yl]oxy})-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

(1r,5s,7s,9s,10s,11s,15s,17s,19s)-10-methyl-5,15-bis[(1s,2s)-2-methylcyclopropyl]-9,19-bis({[(2s,3r,4s,5r)-3,4,5-trimethoxyoxan-2-yl]oxy})-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

C43H70O16 (842.466362)


   

(1s)-2-hydroxy-1-[(1s,4r,5r,6r,8r,10s,11r,12s,13r,16r,18s,21r)-10-hydroxy-4,6,12,17,17-pentamethyl-11-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-18-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-yl]-2-methylpropyl acetate

(1s)-2-hydroxy-1-[(1s,4r,5r,6r,8r,10s,11r,12s,13r,16r,18s,21r)-10-hydroxy-4,6,12,17,17-pentamethyl-11-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-18-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-yl]-2-methylpropyl acetate

C43H70O16 (842.466362)


   

[6-({7,11-dihydroxy-1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl}oxy)-3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]methyl acetate

[6-({7,11-dihydroxy-1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl}oxy)-3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]methyl acetate

C44H74O15 (842.5027454)


   

2-hydroxy-1-(10-hydroxy-4,6,12,17,17-pentamethyl-11-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-18-[(3,4,5-trihydroxyoxan-2-yl)oxy]-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-yl)-2-methylpropyl acetate

2-hydroxy-1-(10-hydroxy-4,6,12,17,17-pentamethyl-11-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-18-[(3,4,5-trihydroxyoxan-2-yl)oxy]-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-yl)-2-methylpropyl acetate

C43H70O16 (842.466362)


   

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl]oxy}oxane-3,4,5-triol

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl]oxy}oxane-3,4,5-triol

C43H70O16 (842.466362)


   

(2s,3r,4s,5s)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]methoxy}oxane-3,4,5-triol

(2s,3r,4s,5s)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]methoxy}oxane-3,4,5-triol

C43H70O16 (842.466362)


   

2-[(5-hydroxy-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-oloxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

2-[(5-hydroxy-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-oloxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C43H70O16 (842.466362)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-1-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-3,4-dihydroxy-5-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-1-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-3,4-dihydroxy-5-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl acetate

C44H74O15 (842.5027454)


   

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5r)-5-hydroxy-2-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13's,14'r,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-oloxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5r)-5-hydroxy-2-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13's,14'r,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-oloxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C43H70O16 (842.466362)


   

(2s,3r,4s,5r)-2-{[(1r,2s,3as,3br,5s,5ar,7s,9as,9br,11ar)-2-hydroxy-1-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,6,6,9a,9b,11a-hexamethyl-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydrocyclopenta[a]phenanthren-7-yl]oxy}-3,5-dihydroxyoxan-4-yl acetate

(2s,3r,4s,5r)-2-{[(1r,2s,3as,3br,5s,5ar,7s,9as,9br,11ar)-2-hydroxy-1-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,6,6,9a,9b,11a-hexamethyl-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydrocyclopenta[a]phenanthren-7-yl]oxy}-3,5-dihydroxyoxan-4-yl acetate

C44H74O15 (842.5027454)


   

3-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-8-{3-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-9-methoxy-3,5-dimethyl-11h-pyrano[3,2-a]carbazol-10-yl}-9-methoxy-3,5,11-trimethylpyrano[3,2-a]carbazole

3-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-8-{3-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-9-methoxy-3,5-dimethyl-11h-pyrano[3,2-a]carbazol-10-yl}-9-methoxy-3,5,11-trimethylpyrano[3,2-a]carbazole

C57H66N2O4 (842.5022316000001)


   

(1r,5s,7s,9s,10s,11s,15s,17s,19s)-10-methyl-5,15-bis[(1s,2s)-2-methylcyclopropyl]-9,19-bis[(3,4,5-trimethoxyoxan-2-yl)oxy]-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

(1r,5s,7s,9s,10s,11s,15s,17s,19s)-10-methyl-5,15-bis[(1s,2s)-2-methylcyclopropyl]-9,19-bis[(3,4,5-trimethoxyoxan-2-yl)oxy]-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

C43H70O16 (842.466362)


   

(1s,5s,7s,9s,10s,11s,15s,17s,19s,20s)-9-{[(2s,3r,4s,5r)-5-hydroxy-3,4-dimethoxyoxan-2-yl]oxy}-10,20-dimethyl-5,15-bis[(1s,2s)-2-methylcyclopropyl]-19-{[(2s,3r,4s,5r)-3,4,5-trimethoxyoxan-2-yl]oxy}-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

(1s,5s,7s,9s,10s,11s,15s,17s,19s,20s)-9-{[(2s,3r,4s,5r)-5-hydroxy-3,4-dimethoxyoxan-2-yl]oxy}-10,20-dimethyl-5,15-bis[(1s,2s)-2-methylcyclopropyl]-19-{[(2s,3r,4s,5r)-3,4,5-trimethoxyoxan-2-yl]oxy}-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

C43H70O16 (842.466362)


   

(2s)-n-[(4as,7s,10s,13r,14s,17r,20r)-5,15,18-trihydroxy-10,20-diisopropyl-17-[(4-methoxyphenyl)methyl]-9,13-dimethyl-7-(2-methylpropyl)-8,11,21-trioxo-1h,2h,3h,4h,4ah,7h,10h,13h,14h,17h,20h-pyridazino[3,2-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-14-yl]-2-[(hydroxymethylidene)amino]-3-methylbutanimidic acid

(2s)-n-[(4as,7s,10s,13r,14s,17r,20r)-5,15,18-trihydroxy-10,20-diisopropyl-17-[(4-methoxyphenyl)methyl]-9,13-dimethyl-7-(2-methylpropyl)-8,11,21-trioxo-1h,2h,3h,4h,4ah,7h,10h,13h,14h,17h,20h-pyridazino[3,2-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-14-yl]-2-[(hydroxymethylidene)amino]-3-methylbutanimidic acid

C42H66N8O10 (842.4901656000001)


   

methyl 10-{[3,5-dihydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

methyl 10-{[3,5-dihydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C43H70O16 (842.466362)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11as)-7,11-dihydroxy-1-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11as)-7,11-dihydroxy-1-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl acetate

C44H74O15 (842.5027454)


   

1-[(1r,3ar,3bs,7s,9ar,10s,11s,11as)-7-{[5-({5-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-4-methoxy-2,6-dimethyloxan-2-yl]oxy}-3a,3b,10,11-tetrahydroxy-9a,11a-dimethyl-1h,2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethanone

1-[(1r,3ar,3bs,7s,9ar,10s,11s,11as)-7-{[5-({5-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-4-methoxy-2,6-dimethyloxan-2-yl]oxy}-3a,3b,10,11-tetrahydroxy-9a,11a-dimethyl-1h,2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethanone

C43H70O16 (842.466362)


   

(2s)-2-{[(2s,3r)-3-({2-[(2r)-2-{[(2s,3s,4e,6e,8s,9s)-3-amino-1-hydroxy-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dien-1-ylidene]amino}-4-carboxy-n-methylbutanamido]-1-hydroxybut-3-en-1-ylidene}amino)-3-carboxy-1-hydroxy-2-methylpropylidene]amino}-5-carbamimidamidopentanoic acid

(2s)-2-{[(2s,3r)-3-({2-[(2r)-2-{[(2s,3s,4e,6e,8s,9s)-3-amino-1-hydroxy-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dien-1-ylidene]amino}-4-carboxy-n-methylbutanamido]-1-hydroxybut-3-en-1-ylidene}amino)-3-carboxy-1-hydroxy-2-methylpropylidene]amino}-5-carbamimidamidopentanoic acid

C41H62N8O11 (842.4537822)


   

10-methyl-5,15-bis(2-methylcyclopropyl)-9,19-bis[(3,4,5-trimethoxyoxan-2-yl)oxy]-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

10-methyl-5,15-bis(2-methylcyclopropyl)-9,19-bis[(3,4,5-trimethoxyoxan-2-yl)oxy]-4,14,21,22-tetraoxatricyclo[15.3.1.1⁷,¹¹]docosane-3,13-dione

C43H70O16 (842.466362)


   

(3s)-1-[(1s,4r,5r,6s,7s,9s,11s,12s,15r,17s,20r)-17-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-methoxy-4,6,11,16,16-pentamethyl-8-oxahexacyclo[10.9.0.0¹,²⁰.0⁴,¹¹.0⁵,⁹.0¹⁵,²⁰]henicosan-7-yl]-3,4-dihydroxy-3-methylbutan-2-one

(3s)-1-[(1s,4r,5r,6s,7s,9s,11s,12s,15r,17s,20r)-17-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-methoxy-4,6,11,16,16-pentamethyl-8-oxahexacyclo[10.9.0.0¹,²⁰.0⁴,¹¹.0⁵,⁹.0¹⁵,²⁰]henicosan-7-yl]-3,4-dihydroxy-3-methylbutan-2-one

C43H70O16 (842.466362)


   

1-(17-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-methoxy-4,6,11,16,16-pentamethyl-8-oxahexacyclo[10.9.0.0¹,²⁰.0⁴,¹¹.0⁵,⁹.0¹⁵,²⁰]henicosan-7-yl)-3,4-dihydroxy-3-methylbutan-2-one

1-(17-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-methoxy-4,6,11,16,16-pentamethyl-8-oxahexacyclo[10.9.0.0¹,²⁰.0⁴,¹¹.0⁵,⁹.0¹⁵,²⁰]henicosan-7-yl)-3,4-dihydroxy-3-methylbutan-2-one

C43H70O16 (842.466362)