Exact Mass: 816.5281

Exact Mass Matches: 816.5281

Found 500 metabolites which its exact mass value is equals to given mass value 816.5281, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Momorcharaside A

2-methyl-6-[4,4,9,13,14-pentamethyl-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2,3,7,8,10,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-17-yl]heptane-2,3,4,5-tetrol

C42H72O15 (816.4871)


Momordicoside A is found in bitter gourd. Momordicoside A is a constituent of Momordica charantia (bitter melon)

   

Majonoside R1

2-{[2-({5,16-dihydroxy-14-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-8-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


Majonoside R1 is found in tea. Majonoside R1 is a constituent of Panax japonicus (Japanese ginseng). Constituent of Panax japonicus (Japanese ginseng). Majonoside R1 is found in tea.

   

(3b,6a,12b,20S,23E)-Dammar-23-ene-3,6,12,20,25-pentol 6,20-diglucoside

2-{[(4E)-2-(5,16-dihydroxy-2,6,6,10,11-pentamethyl-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl)-6-hydroxy-6-methylhept-4-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


(3b,6a,12b,20S,23E)-Dammar-23-ene-3,6,12,20,25-pentol 6,20-diglucoside is found in tea. (3b,6a,12b,20S,23E)-Dammar-23-ene-3,6,12,20,25-pentol 6,20-diglucoside is a constituent of Panax notoginseng (sanchi)

   

PG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C46H73O10P (816.4941)


PG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.

   

PG(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C46H73O10P (816.4941)


PG(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the docosahexaenoic acid moiety is derived from fish oils. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the docosahexaenoic acid moiety is derived from fish oils. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.

   

PGP(a-13:0/i-20:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(10-methyldodecanoyl)oxy]-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C39H78O13P2 (816.4917)


PGP(a-13:0/i-20:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(a-13:0/i-20:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isoeicosanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.

   

PGP(i-12:0/a-21:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(18-methylicosanoyl)oxy]-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C39H78O13P2 (816.4917)


PGP(i-12:0/a-21:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(i-12:0/a-21:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of anteisoheneicosanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.

   

PGP(i-12:0/i-21:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(19-methylicosanoyl)oxy]-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C39H78O13P2 (816.4917)


PGP(i-12:0/i-21:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(i-12:0/i-21:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isoheneicosanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.

   

PGP(i-13:0/i-20:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(11-methyldodecanoyl)oxy]-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C39H78O13P2 (816.4917)


PGP(i-13:0/i-20:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(i-13:0/i-20:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isoeicosanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.

   

Arginyl-arginyl-prolyl-tyrosyl-isoleucyl-leucine

2-[2-(2-{[1-(2-{2-amino-5-[(diaminomethylidene)amino]pentanamido}-5-[(diaminomethylidene)amino]pentanoyl)pyrrolidin-2-yl]formamido}-3-(4-hydroxyphenyl)propanamido)-3-methylpentanamido]-4-methylpentanoic acid

C38H64N12O8 (816.497)


   

PA(20:1(11Z)/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C43H77O12P (816.5152)


PA(20:1(11Z)/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:1(11Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/20:1(11Z))

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C43H77O12P (816.5152)


PA(6 keto-PGF1alpha/20:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/20:1(11Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:1(11Z)/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C43H77O12P (816.5152)


PA(20:1(11Z)/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:1(11Z)/TXB2), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/20:1(11Z))

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C43H77O12P (816.5152)


PA(TXB2/20:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/20:1(11Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(21:0/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-(henicosanoyloxy)propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(21:0/PGF2alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(21:0/PGF2alpha), in particular, consists of one chain of one heneicosanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF2alpha/21:0)

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-(henicosanoyloxy)propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(PGF2alpha/21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF2alpha/21:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of heneicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(21:0/PGE1)

[(2R)-3-(henicosanoyloxy)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(21:0/PGE1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(21:0/PGE1), in particular, consists of one chain of one heneicosanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE1/21:0)

[(2R)-2-(henicosanoyloxy)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(PGE1/21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE1/21:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of heneicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(21:0/PGD1)

[(2R)-3-(henicosanoyloxy)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(21:0/PGD1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(21:0/PGD1), in particular, consists of one chain of one heneicosanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD1/21:0)

[(2R)-2-(henicosanoyloxy)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(PGD1/21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD1/21:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of heneicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:2(13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C47H77O9P (816.5305)


PA(22:2(13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:2(13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 13Z,16Z-docosadienoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:2(13Z,16Z))

[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C47H77O9P (816.5305)


PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:2(13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:2(13Z,16Z)), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:2(13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C47H77O9P (816.5305)


PA(22:2(13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:2(13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 13Z,16Z-docosadienoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:2(13Z,16Z))

[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C47H77O9P (816.5305)


PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:2(13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:2(13Z,16Z)), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:2(13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C47H77O9P (816.5305)


PA(22:2(13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:2(13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 13Z,16Z-docosadienoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:2(13Z,16Z))

[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C47H77O9P (816.5305)


PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:2(13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:2(13Z,16Z)), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:2(13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy]phosphonic acid

C47H77O9P (816.5305)


PA(22:2(13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:2(13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 13Z,16Z-docosadienoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:2(13Z,16Z))

[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy]phosphonic acid

C47H77O9P (816.5305)


PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:2(13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:2(13Z,16Z)), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:2(13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphonic acid

C47H77O9P (816.5305)


PA(22:2(13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:2(13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 13Z,16Z-docosadienoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:2(13Z,16Z))

[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphonic acid

C47H77O9P (816.5305)


PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:2(13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:2(13Z,16Z)), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-21:0/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(18-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(a-21:0/PGF2alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-21:0/PGF2alpha), in particular, consists of one chain of one 18-methyleicosanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF2alpha/a-21:0)

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(18-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(PGF2alpha/a-21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF2alpha/a-21:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 18-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-21:0/PGE1)

[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(18-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(a-21:0/PGE1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-21:0/PGE1), in particular, consists of one chain of one 18-methyleicosanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE1/a-21:0)

[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(18-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(PGE1/a-21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE1/a-21:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 18-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-21:0/PGD1)

[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(18-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(a-21:0/PGD1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-21:0/PGD1), in particular, consists of one chain of one 18-methyleicosanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD1/a-21:0)

[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(18-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(PGD1/a-21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD1/a-21:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 18-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-21:0/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(19-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(i-21:0/PGF2alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-21:0/PGF2alpha), in particular, consists of one chain of one 19-methyleicosanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF2alpha/i-21:0)

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(19-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(PGF2alpha/i-21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF2alpha/i-21:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 19-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-21:0/PGE1)

[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(19-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(i-21:0/PGE1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-21:0/PGE1), in particular, consists of one chain of one 19-methyleicosanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE1/i-21:0)

[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(19-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(PGE1/i-21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE1/i-21:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 19-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-21:0/PGD1)

[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(19-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(i-21:0/PGD1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-21:0/PGD1), in particular, consists of one chain of one 19-methyleicosanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD1/i-21:0)

[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(19-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O11P (816.5516)


PA(PGD1/i-21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD1/i-21:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 19-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:0/20:3(6,8,11)-OH(5))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphinic acid

C44H81O11P (816.5516)


PG(18:0/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(6,8,11)-OH(5)/18:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphinic acid

C44H81O11P (816.5516)


PG(20:3(6,8,11)-OH(5)/18:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(6,8,11)-OH(5)/18:0), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:1(11Z)/18:1(12Z)-O(9S,10R))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(11Z)-icos-11-enoyloxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphinic acid

C44H81O11P (816.5516)


PG(20:1(11Z)/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:1(11Z)/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(12Z)-O(9S,10R)/20:1(11Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(11Z)-icos-11-enoyloxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphinic acid

C44H81O11P (816.5516)


PG(18:1(12Z)-O(9S,10R)/20:1(11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(12Z)-O(9S,10R)/20:1(11Z)), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:1(11Z)/18:1(9Z)-O(12,13))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(11Z)-icos-11-enoyloxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphinic acid

C44H81O11P (816.5516)


PG(20:1(11Z)/18:1(9Z)-O(12,13)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:1(11Z)/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(9Z)-O(12,13)/20:1(11Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(11Z)-icos-11-enoyloxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphinic acid

C44H81O11P (816.5516)


PG(18:1(9Z)-O(12,13)/20:1(11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(9Z)-O(12,13)/20:1(11Z)), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(14-methylhexadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H77O12P (816.5152)


PG(a-17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-17:0)

[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(14-methylhexadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H77O12P (816.5152)


PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-17:0), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(14-methylhexadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H77O12P (816.5152)


PG(a-17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-17:0)

[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(14-methylhexadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H77O12P (816.5152)


PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-17:0), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(14-methylhexadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H77O12P (816.5152)


PG(a-17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-17:0)

[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(14-methylhexadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H77O12P (816.5152)


PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-17:0), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(15-methylhexadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H77O12P (816.5152)


PG(i-17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-17:0)

[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(15-methylhexadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H77O12P (816.5152)


PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-17:0), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(15-methylhexadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H77O12P (816.5152)


PG(i-17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-17:0)

[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(15-methylhexadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H77O12P (816.5152)


PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-17:0), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(15-methylhexadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H77O12P (816.5152)


PG(i-17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-17:0)

[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(15-methylhexadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H77O12P (816.5152)


PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-17:0), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-18:0/20:3(6,8,11)-OH(5))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphinic acid

C44H81O11P (816.5516)


PG(i-18:0/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-18:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(6,8,11)-OH(5)/i-18:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphinic acid

C44H81O11P (816.5516)


PG(20:3(6,8,11)-OH(5)/i-18:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(6,8,11)-OH(5)/i-18:0), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/18:2(10E,12Z)+=O(9))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(18-methylnonadecanoyl)oxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphinic acid

C44H81O11P (816.5516)


PG(i-20:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:2(10E,12Z)+=O(9)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(18-methylnonadecanoyl)oxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphinic acid

C44H81O11P (816.5516)


PG(18:2(10E,12Z)+=O(9)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(10E,12Z)+=O(9)/i-20:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/18:2(9Z,11E)+=O(13))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(18-methylnonadecanoyl)oxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphinic acid

C44H81O11P (816.5516)


PG(i-20:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:2(9Z,11E)+=O(13)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(18-methylnonadecanoyl)oxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphinic acid

C44H81O11P (816.5516)


PG(18:2(9Z,11E)+=O(13)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(9Z,11E)+=O(13)/i-20:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/18:3(10,12,15)-OH(9))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C44H81O11P (816.5516)


PG(i-20:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(10,12,15)-OH(9)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C44H81O11P (816.5516)


PG(18:3(10,12,15)-OH(9)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(10,12,15)-OH(9)/i-20:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/18:3(9,11,15)-OH(13))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C44H81O11P (816.5516)


PG(i-20:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(9,11,15)-OH(13)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C44H81O11P (816.5516)


PG(18:3(9,11,15)-OH(13)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(9,11,15)-OH(13)/i-20:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

SM(d18:1/6 keto-PGF1alpha)

(2-{[(2S,3R,4E)-2-{7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanamido}-3-hydroxyoctadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H81N2O10P (816.5629)


SM(d18:1/6 keto-PGF1alpha) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/6 keto-PGF1alpha) consists of a sphingosine backbone and a 6-Keto-prostaglandin F1alpha chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/TXB2)

(2-{[(2S,3R,4E)-2-[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enamido]-3-hydroxyoctadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H81N2O10P (816.5629)


SM(d18:1/TXB2) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/TXB2) consists of a sphingosine backbone and a Thromboxane B2 chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

Floralginsenoside F

Floralginsenoside F

C42H72O15 (816.4871)


   

Floralquinquenoside B

Floralquinquenoside B

C42H72O15 (816.4871)


   

Floralginsenoside E

Floralginsenoside E

C42H72O15 (816.4871)


   

Tarecilioside C

Tarecilioside C

C42H72O15 (816.4871)


   

Floralquinquenoside D

Floralquinquenoside D

C42H72O15 (816.4871)


   

Floralquinquenoside C

Floralquinquenoside C

C42H72O15 (816.4871)


   

(3beta,16beta,24S)-cycloartane-3,16,24,25,30-pentol 3,25-di-beta-D-glucopyranoside|(3beta,4beta,16beta,24S)-25-(beta-D-glucopyranosyloxy)-16,24,28-trihydroxy-9,19-cyclolanostan-3-yl beta-D-glucopyranoside

(3beta,16beta,24S)-cycloartane-3,16,24,25,30-pentol 3,25-di-beta-D-glucopyranoside|(3beta,4beta,16beta,24S)-25-(beta-D-glucopyranosyloxy)-16,24,28-trihydroxy-9,19-cyclolanostan-3-yl beta-D-glucopyranoside

C42H72O15 (816.4871)


   

napoleogenine

napoleogenine

C46H72O12 (816.5024)


   

hosenkoside N|presapogenin II

hosenkoside N|presapogenin II

C42H72O15 (816.4871)


   

hosenkoside I

hosenkoside I

C42H72O15 (816.4871)


   
   

2alpha,3beta,12beta,20(S)-tetrahydroxy-25-hydroperoxydammar-23-ene-20-O-alpha-L-rhamnopyranosyl-(1->6)-beta-D-glucopyranoside

2alpha,3beta,12beta,20(S)-tetrahydroxy-25-hydroperoxydammar-23-ene-20-O-alpha-L-rhamnopyranosyl-(1->6)-beta-D-glucopyranoside

C42H72O15 (816.4871)


   

3beta,12beta,20S,26-tetrahydroxydammar-24E-en-6alpha-O-beta-D-glucopyranosyl-(1 ? 2)-O-beta-D-glucopyranoside|ginsenjilinol

3beta,12beta,20S,26-tetrahydroxydammar-24E-en-6alpha-O-beta-D-glucopyranosyl-(1 ? 2)-O-beta-D-glucopyranoside|ginsenjilinol

C42H72O15 (816.4871)


   

3beta,7beta,24beta,25,30-pentahydroxycycloartane-24,30-di-O-beta-D-glucopyranoside

3beta,7beta,24beta,25,30-pentahydroxycycloartane-24,30-di-O-beta-D-glucopyranoside

C42H72O15 (816.4871)


   

capsugenin-25,30-O-beta-diglucopyranoside

capsugenin-25,30-O-beta-diglucopyranoside

C42H72O15 (816.4871)


   

(20S)-3beta,6alpha,7beta,20,27-pentahydroxy-dammar-24-ene 20,27-bis-O-beta-D-glucopyranoside

(20S)-3beta,6alpha,7beta,20,27-pentahydroxy-dammar-24-ene 20,27-bis-O-beta-D-glucopyranoside

C42H72O15 (816.4871)


   

hosenkoside J

hosenkoside J

C42H72O15 (816.4871)


   

cyclochivinoside B

cyclochivinoside B

C42H72O15 (816.4871)


   

3,25-di-O-beta-D-glucopyranosyl-1alpha,3beta,7beta,24(S),25-pentahydroxy-cycloartane|macrophyllosaponin E

3,25-di-O-beta-D-glucopyranosyl-1alpha,3beta,7beta,24(S),25-pentahydroxy-cycloartane|macrophyllosaponin E

C42H72O15 (816.4871)


   

3-O-2)-beta-D-glucopyranosyl> (20S,24S)-9beta,19-cyclolanostan-3beta,16beta,20,24,25-pentaol|3-O-[beta-D-glucopyranosyl(1[*]2)-beta-D-glucopyranosyl] (20S,24S)-9beta,19-cyclolanostan-3beta,16beta,20,24,25-pentaol

3-O-2)-beta-D-glucopyranosyl> (20S,24S)-9beta,19-cyclolanostan-3beta,16beta,20,24,25-pentaol|3-O-[beta-D-glucopyranosyl(1[*]2)-beta-D-glucopyranosyl] (20S,24S)-9beta,19-cyclolanostan-3beta,16beta,20,24,25-pentaol

C42H72O15 (816.4871)


   
   

hosenkoside D

hosenkoside D

C42H72O15 (816.4871)


   

1-(9Z-octadecenoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-3-O-alpha-D-glucuronyl-sn-glycerol

1-(9Z-octadecenoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-3-O-alpha-D-glucuronyl-sn-glycerol

C47H76O11 (816.5387)


   

PG(40:9)

1-(9Z,12Z,15Z-Octadeatrienoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phospho-(1-glycerol)

C46H73O10P (816.4941)


   

PG(20:4(5Z,8Z,11Z,14Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phospho-(1-sn-glycerol)

C46H73O10P (816.4941)


   

PG(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(5Z,8Z,11Z,14Z))

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phospho-(1-sn-glycerol)

C46H73O10P (816.4941)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z))

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C46H73O10P (816.4941)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(9Z,12Z,15Z))

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C46H73O10P (816.4941)


   

PI(O-16:0/18:4(6Z,9Z,12Z,15Z))

1-hexadecyl-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phospho-(1-myo-inositol)

C43H77O12P (816.5152)


   

PI(P-16:0/18:3(6Z,9Z,12Z))

1-(1Z-hexadecenyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phospho-(1-myo-inositol)

C43H77O12P (816.5152)


   

PI(P-16:0/18:3(9Z,12Z,15Z))

1-(1Z-hexadecenyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phospho-(1-myo-inositol)

C43H77O12P (816.5152)


   

Momorcharaside A

2-methyl-6-(1,6,6,11,15-pentamethyl-5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-14-yl)heptane-2,3,4,5-tetrol

C42H72O15 (816.4871)


   

Vinaginsenoside R15

2-({5,16-dihydroxy-14-[(4E)-6-hydroxy-6-methyl-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-4-en-2-yl]-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-8-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

Majonoside R1

2-{[2-({5,16-dihydroxy-14-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-8-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

PG 40:9

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C46H73O10P (816.4941)


   

PI O-34:4

1-(1Z-hexadecenyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phospho-(1-myo-inositol)

C43H77O12P (816.5152)


   

Maradolipid

6-O-(tetradecanoyl)-6-O-(9Z-octadecenoyl)-alpha,alpha-trehalose

C44H80O13 (816.5599)


   

Arg-arg-pro-tyr-ile-leu

Neurotensin (8-13) acetate salt

C38H64N12O8 (816.497)


Neurotensin (8-13) is an active fragment of Neurotensin. Neurotensin(8-13) results in a decrease in cell-surface NT1 receptors (NTR1) density.

   

1-eicosanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoserine

1-eicosanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoserine

C44H83NO10P- (816.5754)


   

PA(21:0/PGF2alpha)

PA(21:0/PGF2alpha)

C44H81O11P (816.5516)


   

PA(PGF2alpha/21:0)

PA(PGF2alpha/21:0)

C44H81O11P (816.5516)


   

PA(a-21:0/PGF2alpha)

PA(a-21:0/PGF2alpha)

C44H81O11P (816.5516)


   

PA(PGF2alpha/a-21:0)

PA(PGF2alpha/a-21:0)

C44H81O11P (816.5516)


   

PA(i-21:0/PGF2alpha)

PA(i-21:0/PGF2alpha)

C44H81O11P (816.5516)


   

PA(PGF2alpha/i-21:0)

PA(PGF2alpha/i-21:0)

C44H81O11P (816.5516)


   

PA(a-21:0/PGE1)

PA(a-21:0/PGE1)

C44H81O11P (816.5516)


   

PA(PGE1/a-21:0)

PA(PGE1/a-21:0)

C44H81O11P (816.5516)


   

PA(a-21:0/PGD1)

PA(a-21:0/PGD1)

C44H81O11P (816.5516)


   

PA(PGD1/a-21:0)

PA(PGD1/a-21:0)

C44H81O11P (816.5516)


   

PA(i-21:0/PGE1)

PA(i-21:0/PGE1)

C44H81O11P (816.5516)


   

PA(PGE1/i-21:0)

PA(PGE1/i-21:0)

C44H81O11P (816.5516)


   

PA(i-21:0/PGD1)

PA(i-21:0/PGD1)

C44H81O11P (816.5516)


   

PA(PGD1/i-21:0)

PA(PGD1/i-21:0)

C44H81O11P (816.5516)


   
   
   
   
   

PA(20:1(11Z)/TXB2)

PA(20:1(11Z)/TXB2)

C43H77O12P (816.5152)


   

PA(TXB2/20:1(11Z))

PA(TXB2/20:1(11Z))

C43H77O12P (816.5152)


   

PA(20:1(11Z)/6 keto-PGF1alpha)

PA(20:1(11Z)/6 keto-PGF1alpha)

C43H77O12P (816.5152)


   

PA(6 keto-PGF1alpha/20:1(11Z))

PA(6 keto-PGF1alpha/20:1(11Z))

C43H77O12P (816.5152)


   

PG(i-18:0/20:3(6,8,11)-OH(5))

PG(i-18:0/20:3(6,8,11)-OH(5))

C44H81O11P (816.5516)


   

PG(20:3(6,8,11)-OH(5)/i-18:0)

PG(20:3(6,8,11)-OH(5)/i-18:0)

C44H81O11P (816.5516)


   

PG(i-20:0/18:2(10E,12Z)+=O(9))

PG(i-20:0/18:2(10E,12Z)+=O(9))

C44H81O11P (816.5516)


   

PG(18:2(10E,12Z)+=O(9)/i-20:0)

PG(18:2(10E,12Z)+=O(9)/i-20:0)

C44H81O11P (816.5516)


   

PG(i-20:0/18:2(9Z,11E)+=O(13))

PG(i-20:0/18:2(9Z,11E)+=O(13))

C44H81O11P (816.5516)


   

PG(18:2(9Z,11E)+=O(13)/i-20:0)

PG(18:2(9Z,11E)+=O(13)/i-20:0)

C44H81O11P (816.5516)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate

C44H81O11P (816.5516)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate

C44H81O11P (816.5516)


   

PG(20:1(11Z)/18:1(12Z)-O(9S,10R))

PG(20:1(11Z)/18:1(12Z)-O(9S,10R))

C44H81O11P (816.5516)


   

PG(18:1(12Z)-O(9S,10R)/20:1(11Z))

PG(18:1(12Z)-O(9S,10R)/20:1(11Z))

C44H81O11P (816.5516)


   

PG(20:1(11Z)/18:1(9Z)-O(12,13))

PG(20:1(11Z)/18:1(9Z)-O(12,13))

C44H81O11P (816.5516)


   

PG(18:1(9Z)-O(12,13)/20:1(11Z))

PG(18:1(9Z)-O(12,13)/20:1(11Z))

C44H81O11P (816.5516)


   

PG(i-20:0/18:3(10,12,15)-OH(9))

PG(i-20:0/18:3(10,12,15)-OH(9))

C44H81O11P (816.5516)


   

PG(18:3(10,12,15)-OH(9)/i-20:0)

PG(18:3(10,12,15)-OH(9)/i-20:0)

C44H81O11P (816.5516)


   

PG(i-20:0/18:3(9,11,15)-OH(13))

PG(i-20:0/18:3(9,11,15)-OH(13))

C44H81O11P (816.5516)


   

PG(18:3(9,11,15)-OH(13)/i-20:0)

PG(18:3(9,11,15)-OH(13)/i-20:0)

C44H81O11P (816.5516)


   

PG(a-17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PG(a-17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C43H77O12P (816.5152)


   

PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-17:0)

PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-17:0)

C43H77O12P (816.5152)


   

PG(a-17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PG(a-17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C43H77O12P (816.5152)


   

PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-17:0)

PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-17:0)

C43H77O12P (816.5152)


   

PG(a-17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PG(a-17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C43H77O12P (816.5152)


   

PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-17:0)

PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-17:0)

C43H77O12P (816.5152)


   

PG(i-17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PG(i-17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C43H77O12P (816.5152)


   

PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-17:0)

PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-17:0)

C43H77O12P (816.5152)


   

PG(i-17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PG(i-17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C43H77O12P (816.5152)


   

PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-17:0)

PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-17:0)

C43H77O12P (816.5152)


   

PG(i-17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PG(i-17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C43H77O12P (816.5152)


   

PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-17:0)

PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-17:0)

C43H77O12P (816.5152)


   

PA(22:2(13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PA(22:2(13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C47H77O9P (816.5305)


   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:2(13Z,16Z))

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:2(13Z,16Z))

C47H77O9P (816.5305)


   

PA(22:2(13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PA(22:2(13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C47H77O9P (816.5305)


   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:2(13Z,16Z))

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:2(13Z,16Z))

C47H77O9P (816.5305)


   

PA(22:2(13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PA(22:2(13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C47H77O9P (816.5305)


   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:2(13Z,16Z))

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:2(13Z,16Z))

C47H77O9P (816.5305)


   

PA(22:2(13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PA(22:2(13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C47H77O9P (816.5305)


   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:2(13Z,16Z))

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:2(13Z,16Z))

C47H77O9P (816.5305)


   

PA(22:2(13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PA(22:2(13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C47H77O9P (816.5305)


   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:2(13Z,16Z))

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:2(13Z,16Z))

C47H77O9P (816.5305)


   
   

SM(d18:1/6 keto-PGF1alpha)

SM(d18:1/6 keto-PGF1alpha)

C43H81N2O10P (816.5629)


   

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C43H79NO11P+ (816.539)


   

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-2-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-2-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C43H79NO11P+ (816.539)


   

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C43H79NO11P+ (816.539)


   

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-2-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-2-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C43H79NO11P+ (816.539)


   

2-[hydroxy-[(2R)-3-pentadecanoyloxy-2-[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-pentadecanoyloxy-2-[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C43H79NO11P+ (816.539)


   

2-[hydroxy-[(2R)-2-pentadecanoyloxy-3-[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-pentadecanoyloxy-3-[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C43H79NO11P+ (816.539)


   

2-[[(2R)-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-3-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-3-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H83NO10P+ (816.5754)


   

2-[[(2R)-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-2-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-2-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H83NO10P+ (816.5754)


   

2-[[(2R)-2-[(Z,9S,10S)-9,10-dihydroxyoctadec-12-enoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(Z,9S,10S)-9,10-dihydroxyoctadec-12-enoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H83NO10P+ (816.5754)


   

2-[[(2R)-3-[(Z,9R,10R)-9,10-dihydroxyoctadec-12-enoyl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(Z,9R,10R)-9,10-dihydroxyoctadec-12-enoyl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H83NO10P+ (816.5754)


   

2-[hydroxy-[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H75NO9P+ (816.5179)


   

2-[hydroxy-[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H75NO9P+ (816.5179)


   

2-[hydroxy-[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H75NO9P+ (816.5179)


   

2-[hydroxy-[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H75NO9P+ (816.5179)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H75NO9P+ (816.5179)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H75NO9P+ (816.5179)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H75NO9P+ (816.5179)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H75NO9P+ (816.5179)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H75NO9P+ (816.5179)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H75NO9P+ (816.5179)


   

2-[hydroxy-[(2R)-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H75NO9P+ (816.5179)


   

2-[hydroxy-[(2R)-3-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H75NO9P+ (816.5179)


   

2-[[(2R)-2-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-3-[(E)-hexadec-1-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-3-[(E)-hexadec-1-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H83NO10P+ (816.5754)


   

2-[[(2R)-3-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-2-[(E)-hexadec-1-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-2-[(E)-hexadec-1-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H83NO10P+ (816.5754)


   

2-[[(2R)-3-[(E)-hexadec-1-enoxy]-2-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(E)-hexadec-1-enoxy]-2-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H83NO10P+ (816.5754)


   

2-[[(2R)-2-[(E)-hexadec-1-enoxy]-3-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(E)-hexadec-1-enoxy]-3-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H83NO10P+ (816.5754)


   

2-[[(2R)-3-[(E)-hexadec-1-enoxy]-2-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(E)-hexadec-1-enoxy]-2-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H83NO10P+ (816.5754)


   

2-[[(2R)-2-[(E)-hexadec-1-enoxy]-3-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(E)-hexadec-1-enoxy]-3-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H83NO10P+ (816.5754)


   

Momordicoside A

Momordicoside A

C42H72O15 (816.4871)


   

Majonoside-R1

Majonoside-R1

C42H72O15 (816.4871)


A natural product found in Panax japonicus var. major.

   

Panajaponol A, (rel)-

Panajaponol A, (rel)-

C42H72O15 (816.4871)


A natural product found in Panax japonicus var. major.

   

Smgdg O-8:0_26:4

Smgdg O-8:0_26:4

C43H76O12S (816.5057)


   

Smgdg O-26:4_8:0

Smgdg O-26:4_8:0

C43H76O12S (816.5057)


   

Smgdg O-28:4_6:0

Smgdg O-28:4_6:0

C43H76O12S (816.5057)


   

Dgdg O-8:0_20:3

Dgdg O-8:0_20:3

C43H76O14 (816.5235)


   

Dgdg O-24:3_4:0

Dgdg O-24:3_4:0

C43H76O14 (816.5235)


   

Dgdg O-22:3_6:0

Dgdg O-22:3_6:0

C43H76O14 (816.5235)


   

Dgdg O-20:3_8:0

Dgdg O-20:3_8:0

C43H76O14 (816.5235)


   

Dgdg O-26:3_2:0

Dgdg O-26:3_2:0

C43H76O14 (816.5235)


   

Smgdg O-18:3_16:1

Smgdg O-18:3_16:1

C43H76O12S (816.5057)


   

Smgdg O-12:0_22:4

Smgdg O-12:0_22:4

C43H76O12S (816.5057)


   

Smgdg O-16:3_18:1

Smgdg O-16:3_18:1

C43H76O12S (816.5057)


   

Smgdg O-16:1_18:3

Smgdg O-16:1_18:3

C43H76O12S (816.5057)


   

Smgdg O-16:2_18:2

Smgdg O-16:2_18:2

C43H76O12S (816.5057)


   

Smgdg O-18:4_16:0

Smgdg O-18:4_16:0

C43H76O12S (816.5057)


   

Smgdg O-17:2_17:2

Smgdg O-17:2_17:2

C43H76O12S (816.5057)


   

Smgdg O-18:1_16:3

Smgdg O-18:1_16:3

C43H76O12S (816.5057)


   

Smgdg O-20:4_14:0

Smgdg O-20:4_14:0

C43H76O12S (816.5057)


   

Smgdg O-18:0_16:4

Smgdg O-18:0_16:4

C43H76O12S (816.5057)


   

Smgdg O-24:4_10:0

Smgdg O-24:4_10:0

C43H76O12S (816.5057)


   

Smgdg O-14:0_20:4

Smgdg O-14:0_20:4

C43H76O12S (816.5057)


   

Smgdg O-22:4_12:0

Smgdg O-22:4_12:0

C43H76O12S (816.5057)


   

Smgdg O-18:2_16:2

Smgdg O-18:2_16:2

C43H76O12S (816.5057)


   

Smgdg O-10:0_24:4

Smgdg O-10:0_24:4

C43H76O12S (816.5057)


   

Smgdg O-16:4_18:0

Smgdg O-16:4_18:0

C43H76O12S (816.5057)


   

Smgdg O-14:1_20:3

Smgdg O-14:1_20:3

C43H76O12S (816.5057)


   

Smgdg O-16:0_18:4

Smgdg O-16:0_18:4

C43H76O12S (816.5057)


   

Smgdg O-20:3_14:1

Smgdg O-20:3_14:1

C43H76O12S (816.5057)


   

Dgdg O-16:3_12:0

Dgdg O-16:3_12:0

C43H76O14 (816.5235)


   

Dgdg O-12:0_16:3

Dgdg O-12:0_16:3

C43H76O14 (816.5235)


   

Dgdg O-10:0_18:3

Dgdg O-10:0_18:3

C43H76O14 (816.5235)


   

Dgdg O-18:3_10:0

Dgdg O-18:3_10:0

C43H76O14 (816.5235)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] octadecanoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] octadecanoate

C43H77O12P (816.5152)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (Z)-tetradec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (Z)-tetradec-9-enoate

C43H77O12P (816.5152)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecoxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecoxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C43H77O12P (816.5152)


   

[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] dodecanoate

[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] dodecanoate

C43H77O12P (816.5152)


   

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C43H77O12P (816.5152)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C43H77O12P (816.5152)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] hexadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] hexadecanoate

C43H77O12P (816.5152)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] tetradecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] tetradecanoate

C43H77O12P (816.5152)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C43H77O12P (816.5152)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

C43H77O12P (816.5152)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C43H77O12P (816.5152)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C43H77O12P (816.5152)


   

[1-hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C43H77O12P (816.5152)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecoxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecoxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C43H77O12P (816.5152)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (Z)-hexadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (Z)-hexadec-9-enoate

C43H77O12P (816.5152)


   

[1-dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C43H77O12P (816.5152)


   

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C43H77O12P (816.5152)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C43H77O12P (816.5152)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] decanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] decanoate

C43H77O12P (816.5152)


   
   

PEtOH 21:1_22:6

PEtOH 21:1_22:6

C48H81O8P (816.5669)


   

PMeOH 22:1_22:6

PMeOH 22:1_22:6

C48H81O8P (816.5669)


   

PMeOH 26:2_18:5

PMeOH 26:2_18:5

C48H81O8P (816.5669)


   

PMeOH 22:2_22:5

PMeOH 22:2_22:5

C48H81O8P (816.5669)


   

PEtOH 21:2_22:5

PEtOH 21:2_22:5

C48H81O8P (816.5669)


   

PMeOH 24:2_20:5

PMeOH 24:2_20:5

C48H81O8P (816.5669)


   

PMeOH 18:3_26:4

PMeOH 18:3_26:4

C48H81O8P (816.5669)


   

PMeOH 20:3_24:4

PMeOH 20:3_24:4

C48H81O8P (816.5669)


   

PMeOH 22:3_22:4

PMeOH 22:3_22:4

C48H81O8P (816.5669)


   

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C42H72O15 (816.4871)


   

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C42H72O15 (816.4871)


   

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C42H72O15 (816.4871)


   

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

C48H80O10 (816.5751)


   

[1-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C48H80O10 (816.5751)


   

3,4,5-trihydroxy-6-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

C47H76O11 (816.5387)


   

6-[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C47H76O11 (816.5387)


   

[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C42H72O15 (816.4871)


   

[3,4,5-trihydroxy-6-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

6-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C47H76O11 (816.5387)


   

3,4,5-trihydroxy-6-[2-[(Z)-icos-11-enoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[2-[(Z)-icos-11-enoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]oxane-2-carboxylic acid

C47H76O11 (816.5387)


   

[6-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-henicos-11-enoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-henicos-11-enoate

C48H80O10 (816.5751)


   

[6-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[6-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[1-heptadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-heptadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C48H80O10 (816.5751)


   

[3,4,5-trihydroxy-6-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[1-[(Z)-heptadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[(Z)-heptadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C48H80O10 (816.5751)


   

3,4,5-trihydroxy-6-[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]oxane-2-carboxylic acid

C47H76O11 (816.5387)


   

6-[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C47H76O11 (816.5387)


   

[6-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-dodecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-dodecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[6-[3-hexadecanoyloxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-hexadecanoyloxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C48H80O10 (816.5751)


   

6-[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C47H76O11 (816.5387)


   

3,4,5-trihydroxy-6-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxane-2-carboxylic acid

C47H76O11 (816.5387)


   

3,4,5-trihydroxy-6-[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]oxane-2-carboxylic acid

C47H76O11 (816.5387)


   

[3,4,5-trihydroxy-6-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

6-[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C47H76O11 (816.5387)


   

[6-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[6-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[1-[(Z)-nonadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[(Z)-nonadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C48H80O10 (816.5751)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C46H73O10P (816.4941)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C46H73O10P (816.4941)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C46H73O10P (816.4941)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C46H73O10P (816.4941)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C46H73O10P (816.4941)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C46H73O10P (816.4941)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C46H73O10P (816.4941)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C46H73O10P (816.4941)


   

[(2S)-1-[(E)-heptadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2S)-1-[(E)-heptadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C48H80O10 (816.5751)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C46H73O10P (816.4941)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C42H72O15 (816.4871)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C46H73O10P (816.4941)


   

2-[[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C47H79NO8P+ (816.5543)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C48H80O10 (816.5751)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C46H73O10P (816.4941)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2S,3S,6S)-6-[(2S)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(E)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(E)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-[(E)-undec-4-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-[(E)-undec-4-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C42H72O15 (816.4871)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C48H80O10 (816.5751)


   

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

2-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C47H79NO8P+ (816.5543)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C46H73O10P (816.4941)


   

2-[[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C47H79NO8P+ (816.5543)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C46H73O10P (816.4941)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2S,3S,6S)-6-[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(E)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(E)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C47H79NO8P+ (816.5543)


   

[(2S)-1-heptadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-1-heptadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C48H80O10 (816.5751)


   

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (14E,16E)-tricosa-14,16-dienoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (14E,16E)-tricosa-14,16-dienoate

C48H80O10 (816.5751)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoate

C46H73O10P (816.4941)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoate

C46H73O10P (816.4941)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   
   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C46H73O10P (816.4941)


   

2-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C47H79NO8P+ (816.5543)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C46H73O10P (816.4941)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (14E,17E,20E)-tricosa-14,17,20-trienoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (14E,17E,20E)-tricosa-14,17,20-trienoate

C48H80O10 (816.5751)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoate

C46H73O10P (816.4941)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C46H73O10P (816.4941)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-tricos-11-enoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-tricos-11-enoate

C48H80O10 (816.5751)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C46H73O10P (816.4941)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2S)-1-[(E)-heptadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-1-[(E)-heptadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C48H80O10 (816.5751)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C46H73O10P (816.4941)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   
   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C46H73O10P (816.4941)


   

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoate

C48H80O10 (816.5751)


   

[(2R)-2-heptadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-heptadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C48H80O10 (816.5751)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C46H73O10P (816.4941)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C48H80O10 (816.5751)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C46H73O10P (816.4941)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C46H73O10P (816.4941)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C46H73O10P (816.4941)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C46H73O10P (816.4941)


   

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   
   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C47H79NO8P+ (816.5543)


   
   

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C48H80O10 (816.5751)


   

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H76O12S (816.5057)


   

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C47H79NO8P+ (816.5543)


   

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C47H79NO8P+ (816.5543)


   

2-[hydroxy-[3-nonanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-nonanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C47H79NO8P+ (816.5543)


   

PG(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PG(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C46H73O10P (816.4941)


   

PG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C46H73O10P (816.4941)


   

(3b,6a,12b,20S,23E)-Dammar-23-ene-3,6,12,20,25-pentol 6,20-diglucoside

(3b,6a,12b,20S,23E)-Dammar-23-ene-3,6,12,20,25-pentol 6,20-diglucoside

C42H72O15 (816.4871)


   

MGDG(39:6)

MGDG(20:4_19:2)

C48H80O10 (816.5751)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

SQDG(34:3)

SQDG(16:0_18:3)

C43H76O12S (816.5057)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG 17:0_22:6

MGDG 17:0_22:6

C48H80O10 (816.5751)


   

MGDG 17:1_22:5

MGDG 17:1_22:5

C48H80O10 (816.5751)


   

MGDG 17:2_22:4

MGDG 17:2_22:4

C48H80O10 (816.5751)


   
   

DGDG O-27:4;O

DGDG O-27:4;O

C42H72O15 (816.4871)


   
   

MGDG O-39:7;O

MGDG O-39:7;O

C48H80O10 (816.5751)


   
   
   
   
   
   

PA 20:1/20:3;O4

PA 20:1/20:3;O4

C43H77O12P (816.5152)


   

PA 22:1/22:7;O

PA 22:1/22:7;O

C47H77O9P (816.5305)


   

PA 22:2/22:6;O

PA 22:2/22:6;O

C47H77O9P (816.5305)


   

PA 22:4/22:4;O

PA 22:4/22:4;O

C47H77O9P (816.5305)


   
   
   
   
   
   
   
   

PG O-18:0/20:4;O2

PG O-18:0/20:4;O2

C44H81O11P (816.5516)


   
   
   

PG P-18:0/20:3;O2

PG P-18:0/20:3;O2

C44H81O11P (816.5516)


   

PG P-18:1/22:8;O

PG P-18:1/22:8;O

C46H73O10P (816.4941)


   

PG P-20:1/18:2;O2

PG P-20:1/18:2;O2

C44H81O11P (816.5516)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PI P-14:0/20:3 or PI O-14:1/20:3

PI P-14:0/20:3 or PI O-14:1/20:3

C43H77O12P (816.5152)


   
   

PI P-16:0/18:3 or PI O-16:1/18:3

PI P-16:0/18:3 or PI O-16:1/18:3

C43H77O12P (816.5152)


   
   

PI P-16:1/18:2 or PI O-16:2/18:2

PI P-16:1/18:2 or PI O-16:2/18:2

C43H77O12P (816.5152)


   
   

PI P-34:3 or PI O-34:4

PI P-34:3 or PI O-34:4

C43H77O12P (816.5152)


   
   
   
   
   

PA(45:7)

PA(22:6_23:1)

C48H81O8P (816.5669)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG(40:13)

MGDG(20:3_20:10)

C49H68O10 (816.4812)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

DGDG(27:3)

DGDG(16:0_11:3)

C42H72O15 (816.4871)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-1-[(2s,4e)-6-hydroperoxy-2-hydroxy-6-methylhept-4-en-2-yl]-11-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-1-[(2s,4e)-6-hydroperoxy-2-hydroxy-6-methylhept-4-en-2-yl]-11-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

2-({3-hydroxy-6-[14-hydroxy-7-(hydroxymethyl)-7,12,16-trimethyl-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2-methylheptan-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

2-({3-hydroxy-6-[14-hydroxy-7-(hydroxymethyl)-7,12,16-trimethyl-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2-methylheptan-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

2-{[6-hydroperoxy-2-(11-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl)-6-methylhept-4-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[6-hydroperoxy-2-(11-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl)-6-methylhept-4-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2r,3r,4s,5s,6r)-2-{[(1r,2s,4ar,4br,6as,7r,8s,10ar,10br,12ar)-7-hydroxy-8-[(3e)-5-hydroxy-4-methylpent-3-en-1-yl]-8-(hydroxymethyl)-1,4a,10a,10b-tetramethyl-1-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-dodecahydro-2h-chrysen-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,2s,4ar,4br,6as,7r,8s,10ar,10br,12ar)-7-hydroxy-8-[(3e)-5-hydroxy-4-methylpent-3-en-1-yl]-8-(hydroxymethyl)-1,4a,10a,10b-tetramethyl-1-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-dodecahydro-2h-chrysen-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2r,3r,4s,5s,6r)-2-[(2r)-2-[(1r,2s,4ar,4br,6'r,6ar,7r,8s,10ar,10br,12as)-1-hydroxy-7-(hydroxymethyl)-4a,4b,7,10a-tetramethyl-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-spiro[chrysene-2,3'-oxan]-6'-yl]propoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-[(2r)-2-[(1r,2s,4ar,4br,6'r,6ar,7r,8s,10ar,10br,12as)-1-hydroxy-7-(hydroxymethyl)-4a,4b,7,10a-tetramethyl-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-spiro[chrysene-2,3'-oxan]-6'-yl]propoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-[7-(hydroxymethyl)-6'-(1-hydroxypropan-2-yl)-4a,4b,7,10a-tetramethyl-dodecahydro-1h-spiro[chrysene-2,3'-oxan]-1-oloxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-[7-(hydroxymethyl)-6'-(1-hydroxypropan-2-yl)-4a,4b,7,10a-tetramethyl-dodecahydro-1h-spiro[chrysene-2,3'-oxan]-1-oloxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

6-o-β-d-glucopyranosyl-20-o-β-d-glucopyra-nosyl-3β,6α,12β,20(s),25-pentahydroxydam-mar-23-ene

NA

C42H72O15 (816.4871)


{"Ingredient_id": "HBIN012640","Ingredient_name": "6-o-\u03b2-d-glucopyranosyl-20-o-\u03b2-d-glucopyra-nosyl-3\u03b2,6\u03b1,12\u03b2,20(s),25-pentahydroxydam-mar-23-ene","Alias": "NA","Ingredient_formula": "C42H72O15","Ingredient_Smile": "CC1(C(CCC2(C1C(CC3(C2CC(C4C3(CCC4C(C)(CC=CC(C)(C)O)OC5C(C(C(C(O5)CO)O)O)O)C)O)C)OC6C(C(C(C(O6)CO)O)O)O)C)O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT15622","TCMID_id": "8650","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(2s,3r,4s,5s,6r)-2-{[(2s,5z)-2-[(1s,3ar,3br,4s,5ar,7s,9as,9br,11ar)-4,7-dihydroxy-3b-(hydroxymethyl)-3a,6,6,9a-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s,5z)-2-[(1s,3ar,3br,4s,5ar,7s,9as,9br,11ar)-4,7-dihydroxy-3b-(hydroxymethyl)-3a,6,6,9a-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4s,5s,6r)-2-({2-[(2s,5s)-5-[(1r,3as,3br,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-3b,6,6,9a-tetramethyl-3a-({[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-5-methyloxolan-2-yl]propan-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-({2-[(2s,5s)-5-[(1r,3as,3br,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-3b,6,6,9a-tetramethyl-3a-({[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-5-methyloxolan-2-yl]propan-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

2-[(2-{[1-(6-hydroperoxy-2-hydroxy-6-methylhept-4-en-2-yl)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(2-{[1-(6-hydroperoxy-2-hydroxy-6-methylhept-4-en-2-yl)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2r,3r,4s,5s,6r)-2-{[(2s,4e)-2-[(1s,3ar,3bs,5r,5as,7r,9as,9br,11r,11as)-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-5-{[(2r,3s,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-hydroxy-6-methylhept-4-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(2s,4e)-2-[(1s,3ar,3bs,5r,5as,7r,9as,9br,11r,11as)-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-5-{[(2r,3s,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-hydroxy-6-methylhept-4-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4s,5s,6r)-2-{[(3r,6r)-6-[(1s,3r,6s,8r,10s,11s,12s,14s,15r,16r)-10,14-dihydroxy-7,7,12,16-tetramethyl-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-3-hydroxy-2-methylheptan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(3r,6r)-6-[(1s,3r,6s,8r,10s,11s,12s,14s,15r,16r)-10,14-dihydroxy-7,7,12,16-tetramethyl-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-3-hydroxy-2-methylheptan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3s)-2-{[(2s)-2-{[(2s,3s)-2-{[(2s)-4-carboxy-1-hydroxy-2-{[(2s)-1-hydroxy-2-{[(2s)-1-hydroxy-2-[(1-hydroxyoctylidene)amino]-3-methylbutylidene]amino}-3-phenylpropylidene]amino}butylidene]amino}-1-hydroxy-3-methylpentylidene]amino}-1-hydroxypropylidene]amino}-3-methylpentanoic acid

(2s,3s)-2-{[(2s)-2-{[(2s,3s)-2-{[(2s)-4-carboxy-1-hydroxy-2-{[(2s)-1-hydroxy-2-{[(2s)-1-hydroxy-2-[(1-hydroxyoctylidene)amino]-3-methylbutylidene]amino}-3-phenylpropylidene]amino}butylidene]amino}-1-hydroxy-3-methylpentylidene]amino}-1-hydroxypropylidene]amino}-3-methylpentanoic acid

C42H68N6O10 (816.4997)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-1-[(2s)-2,7-dihydroxy-6-methylhept-5-en-2-yl]-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-1-[(2s)-2,7-dihydroxy-6-methylhept-5-en-2-yl]-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11as)-7,11-dihydroxy-1-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11as)-7,11-dihydroxy-1-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4s,5s,6r)-2-{[(3r,6r)-6-[(1s,3r,6s,7s,8r,10s,11s,12s,15r,16r)-6,10-dihydroxy-7,12,16-trimethyl-7-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2-hydroxy-2-methylheptan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(3r,6r)-6-[(1s,3r,6s,7s,8r,10s,11s,12s,15r,16r)-6,10-dihydroxy-7,12,16-trimethyl-7-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2-hydroxy-2-methylheptan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5s,6r)-2-{[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-1-[(2s,3e,5r)-2,5,6-trihydroxy-6-methylhept-3-en-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5s,6r)-2-{[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-1-[(2s,3e,5r)-2,5,6-trihydroxy-6-methylhept-3-en-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-2-{[(1s,3r,6s,8r,11s,12s,14s,15r,16r)-6-hydroxy-7,7,12,16-tetramethyl-15-[(2s,5s)-2,5,6-trihydroxy-6-methylheptan-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-14-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-2-{[(1s,3r,6s,8r,11s,12s,14s,15r,16r)-6-hydroxy-7,7,12,16-tetramethyl-15-[(2s,5s)-2,5,6-trihydroxy-6-methylheptan-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-14-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-[(1r,2s,4ar,4br,6'r,6ar,7r,8s,10ar,10br,12as)-7-(hydroxymethyl)-6'-[(2r)-1-hydroxypropan-2-yl]-4a,4b,7,10a-tetramethyl-dodecahydro-1h-spiro[chrysene-2,3'-oxan]-1-oloxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-[(1r,2s,4ar,4br,6'r,6ar,7r,8s,10ar,10br,12as)-7-(hydroxymethyl)-6'-[(2r)-1-hydroxypropan-2-yl]-4a,4b,7,10a-tetramethyl-dodecahydro-1h-spiro[chrysene-2,3'-oxan]-1-oloxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

2-[(4,5-dihydroxy-2-{[14-hydroxy-7,7,12,16-tetramethyl-15-(2,5,6-trihydroxy-6-methylheptan-2-yl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(4,5-dihydroxy-2-{[14-hydroxy-7,7,12,16-tetramethyl-15-(2,5,6-trihydroxy-6-methylheptan-2-yl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4s,5s,6r)-2-({3,6-dihydroxy-6-[(1s,7s)-10-hydroxy-3a,6,6,9b,11a-pentamethyl-7-{[(2r,3r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylheptan-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-({3,6-dihydroxy-6-[(1s,7s)-10-hydroxy-3a,6,6,9b,11a-pentamethyl-7-{[(2r,3r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylheptan-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

2-{[6-(10,14-dihydroxy-7,7,12,16-tetramethyl-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl)-3-hydroxy-2-methylheptan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[6-(10,14-dihydroxy-7,7,12,16-tetramethyl-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl)-3-hydroxy-2-methylheptan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4s,5s,6r)-2-{[(2s,4e)-2-[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-hydroxy-6-methylhept-4-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s,4e)-2-[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-hydroxy-6-methylhept-4-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

2-[(2-{5-[7,11-dihydroxy-3b,6,6,9a-tetramethyl-3a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-5-methyloxolan-2-yl}propan-2-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(2-{5-[7,11-dihydroxy-3b,6,6,9a-tetramethyl-3a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-5-methyloxolan-2-yl}propan-2-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-({7,11-dihydroxy-1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-({7,11-dihydroxy-1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-[(1r,2s,4ar,4br,6's,6ar,7r,8s,10ar,10br,12as)-7-(hydroxymethyl)-6'-[(2s)-1-hydroxypropan-2-yl]-4a,4b,7,10a-tetramethyl-dodecahydro-1h-spiro[chrysene-2,3'-oxan]-1-oloxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-[(1r,2s,4ar,4br,6's,6ar,7r,8s,10ar,10br,12as)-7-(hydroxymethyl)-6'-[(2s)-1-hydroxypropan-2-yl]-4a,4b,7,10a-tetramethyl-dodecahydro-1h-spiro[chrysene-2,3'-oxan]-1-oloxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

2-({2-[4,7-dihydroxy-3b-(hydroxymethyl)-3a,6,6,9a-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

2-({2-[4,7-dihydroxy-3b-(hydroxymethyl)-3a,6,6,9a-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4r,5s,6r)-2-{[(3r,4r,4ar,5r,6as,6br,8ar,9s,10s,12ar,12br,14br)-4,5,10-trihydroxy-4a,9-bis(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicen-3-yl]oxy}-3-hydroxy-6-methyl-5-{[(2e)-2-methylbut-2-enoyl]oxy}oxan-4-yl (2e)-2-methylbut-2-enoate

(2s,3r,4r,5s,6r)-2-{[(3r,4r,4ar,5r,6as,6br,8ar,9s,10s,12ar,12br,14br)-4,5,10-trihydroxy-4a,9-bis(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicen-3-yl]oxy}-3-hydroxy-6-methyl-5-{[(2e)-2-methylbut-2-enoyl]oxy}oxan-4-yl (2e)-2-methylbut-2-enoate

C46H72O12 (816.5024)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-2-{[(1s,3r,6s,8r,11s,12s,14s,15r,16r)-14-hydroxy-7,7,12,16-tetramethyl-15-[(2s,5s)-2,5,6-trihydroxy-6-methylheptan-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-2-{[(1s,3r,6s,8r,11s,12s,14s,15r,16r)-14-hydroxy-7,7,12,16-tetramethyl-15-[(2s,5s)-2,5,6-trihydroxy-6-methylheptan-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4s,5r,6r)-2-{[(2r,3r,4s,5r,6r)-2-{[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-1-[(2s,4e)-6-hydroperoxy-2-hydroxy-6-methylhept-4-en-2-yl]-11-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5r,6r)-2-{[(2r,3r,4s,5r,6r)-2-{[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-1-[(2s,4e)-6-hydroperoxy-2-hydroxy-6-methylhept-4-en-2-yl]-11-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(3r,4r,5s,6s)-6-[(1r,3as,3br,7s,9as,9br,11ar)-3a,6,6,9b,11a-pentamethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylheptane-2,3,4,5-tetrol

(3r,4r,5s,6s)-6-[(1r,3as,3br,7s,9as,9br,11ar)-3a,6,6,9b,11a-pentamethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylheptane-2,3,4,5-tetrol

C42H72O15 (816.4871)


   

(2e,4e,6e,8e,10e,12e,14e,16e,18e,20e,22e)-24-{[(2s,4r,5r)-4,5-dihydroxy-3-[(12-methyltetradecanoyl)oxy]oxan-2-yl]oxy}-2,6,10,15,19,23-hexamethyl-24-oxotetracosa-2,4,6,8,10,12,14,16,18,20,22-undecaenoic acid

(2e,4e,6e,8e,10e,12e,14e,16e,18e,20e,22e)-24-{[(2s,4r,5r)-4,5-dihydroxy-3-[(12-methyltetradecanoyl)oxy]oxan-2-yl]oxy}-2,6,10,15,19,23-hexamethyl-24-oxotetracosa-2,4,6,8,10,12,14,16,18,20,22-undecaenoic acid

C50H72O9 (816.5176)


   

(2s,3r,4r,5r,6r)-2-{[(3r,4r,4ar,5r,6as,6br,8ar,9s,10s,12ar,12br,14br)-4,5,10-trihydroxy-4a,9-bis(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicen-3-yl]oxy}-3-hydroxy-6-methyl-5-{[(2e)-2-methylbut-2-enoyl]oxy}oxan-4-yl (2e)-2-methylbut-2-enoate

(2s,3r,4r,5r,6r)-2-{[(3r,4r,4ar,5r,6as,6br,8ar,9s,10s,12ar,12br,14br)-4,5,10-trihydroxy-4a,9-bis(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicen-3-yl]oxy}-3-hydroxy-6-methyl-5-{[(2e)-2-methylbut-2-enoyl]oxy}oxan-4-yl (2e)-2-methylbut-2-enoate

C46H72O12 (816.5024)


   

(2r,3r,4s,5s,6r)-2-[(1r,2s,4ar,4br,6's,6ar,7r,8s,10ar,10br,12as)-6'-[(2s)-1-hydroxypropan-2-yl]-4a,4b,7,10a-tetramethyl-7-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-dodecahydro-1h-spiro[chrysene-2,3'-oxan]-1-oloxy]-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-[(1r,2s,4ar,4br,6's,6ar,7r,8s,10ar,10br,12as)-6'-[(2s)-1-hydroxypropan-2-yl]-4a,4b,7,10a-tetramethyl-7-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-dodecahydro-1h-spiro[chrysene-2,3'-oxan]-1-oloxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

2-{[6-(4,10-dihydroxy-7,7,12,16-tetramethyl-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl)-3-hydroxy-2-methylheptan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[6-(4,10-dihydroxy-7,7,12,16-tetramethyl-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl)-3-hydroxy-2-methylheptan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4r,6r)-6-{[(3r,4s,5r,6s,7s,9r,11r,12s,13s)-12-(acetyloxy)-6-{[(2s,3r,4s,6r)-3-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-14-[(2s,3s)-3-hydroxybutan-2-yl]-3,5,7,9,11,13-hexamethyl-2,10-dioxo-1-oxacyclotetradecan-4-yl]oxy}-4-methoxy-2,4-dimethyloxan-3-yl acetate

(2s,3r,4r,6r)-6-{[(3r,4s,5r,6s,7s,9r,11r,12s,13s)-12-(acetyloxy)-6-{[(2s,3r,4s,6r)-3-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-14-[(2s,3s)-3-hydroxybutan-2-yl]-3,5,7,9,11,13-hexamethyl-2,10-dioxo-1-oxacyclotetradecan-4-yl]oxy}-4-methoxy-2,4-dimethyloxan-3-yl acetate

C42H72O15 (816.4871)


   

(2s,3r,4s,5s,6r)-2-{[(3s,6r)-6-[(1s,3s,4s,6s,8s,10s,11s,12s,15r,16r)-4,10-dihydroxy-7,7,12,16-tetramethyl-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-3-hydroxy-2-methylheptan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(3s,6r)-6-[(1s,3s,4s,6s,8s,10s,11s,12s,15r,16r)-4,10-dihydroxy-7,7,12,16-tetramethyl-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-3-hydroxy-2-methylheptan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

3-hydroxy-6-methyl-5-[(2-methylbut-2-enoyl)oxy]-2-{[4,5,10-trihydroxy-4a,9-bis(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicen-3-yl]oxy}oxan-4-yl 2-methylbut-2-enoate

3-hydroxy-6-methyl-5-[(2-methylbut-2-enoyl)oxy]-2-{[4,5,10-trihydroxy-4a,9-bis(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicen-3-yl]oxy}oxan-4-yl 2-methylbut-2-enoate

C46H72O12 (816.5024)


   

2-({6-[6,10-dihydroxy-7,12,16-trimethyl-7-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2-hydroxy-2-methylheptan-3-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

2-({6-[6,10-dihydroxy-7,12,16-trimethyl-7-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2-hydroxy-2-methylheptan-3-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2r,3r,4s,5s,6r)-2-{[(1r,2s,4ar,4br,6as,7r,8r,10ar,10br,12ar)-7-hydroxy-8-[(3z)-5-hydroxy-4-methylpent-3-en-1-yl]-8-(hydroxymethyl)-1,4a,10a,10b-tetramethyl-1-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-dodecahydro-2h-chrysen-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,2s,4ar,4br,6as,7r,8r,10ar,10br,12ar)-7-hydroxy-8-[(3z)-5-hydroxy-4-methylpent-3-en-1-yl]-8-(hydroxymethyl)-1,4a,10a,10b-tetramethyl-1-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-dodecahydro-2h-chrysen-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

2-[(4,5-dihydroxy-2-{[6-hydroxy-7,7,12,16-tetramethyl-15-(2,5,6-trihydroxy-6-methylheptan-2-yl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-14-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(4,5-dihydroxy-2-{[6-hydroxy-7,7,12,16-tetramethyl-15-(2,5,6-trihydroxy-6-methylheptan-2-yl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-14-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4s,5s,6r)-2-{[(2s,4e)-2-[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-hydroperoxy-6-methylhept-4-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s,4e)-2-[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-hydroperoxy-6-methylhept-4-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

2-{[2-(7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl)-6-hydroxy-6-methylhept-4-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[2-(7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl)-6-hydroxy-6-methylhept-4-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

2-{[2-({7,11-dihydroxy-1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[2-({7,11-dihydroxy-1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-1-[(2s,3e,5s)-2,5,6-trihydroxy-6-methylhept-3-en-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-1-[(2s,3e,5s)-2,5,6-trihydroxy-6-methylhept-3-en-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4s,5r,6r)-2-{[(3r,6r)-6-[(1s,3r,6s,8r,10s,11s,12s,14s,15r,16r)-10,14-dihydroxy-7,7,12,16-tetramethyl-6-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-3-hydroxy-2-methylheptan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5r,6r)-2-{[(3r,6r)-6-[(1s,3r,6s,8r,10s,11s,12s,14s,15r,16r)-10,14-dihydroxy-7,7,12,16-tetramethyl-6-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-3-hydroxy-2-methylheptan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

2-{2-[1-hydroxy-7-(hydroxymethyl)-4a,4b,7,10a-tetramethyl-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-spiro[chrysene-2,3'-oxan]-6'-yl]propoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{2-[1-hydroxy-7-(hydroxymethyl)-4a,4b,7,10a-tetramethyl-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-spiro[chrysene-2,3'-oxan]-6'-yl]propoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

2-{[7-hydroxy-8-(5-hydroxy-4-methylpent-3-en-1-yl)-8-(hydroxymethyl)-1,4a,10a,10b-tetramethyl-1-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-dodecahydro-2h-chrysen-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[7-hydroxy-8-(5-hydroxy-4-methylpent-3-en-1-yl)-8-(hydroxymethyl)-1,4a,10a,10b-tetramethyl-1-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-dodecahydro-2h-chrysen-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4s,5s,6r)-2-{[(5e)-7-hydroxy-6-methyl-2-{7,9,11-trihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}hept-5-en-2-yl]oxy}-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(5e)-7-hydroxy-6-methyl-2-{7,9,11-trihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}hept-5-en-2-yl]oxy}-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

(2s,3r,4s,5s,6r)-2-{[(3s,6r)-3-hydroxy-6-[(1r,3r,6s,7s,8r,11s,12s,14s,15r,16r)-14-hydroxy-7-(hydroxymethyl)-7,12,16-trimethyl-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2-methylheptan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(3s,6r)-3-hydroxy-6-[(1r,3r,6s,7s,8r,11s,12s,14s,15r,16r)-14-hydroxy-7-(hydroxymethyl)-7,12,16-trimethyl-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2-methylheptan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O15 (816.4871)


   

2-(hydroxymethyl)-6-[6'-(1-hydroxypropan-2-yl)-4a,4b,7,10a-tetramethyl-7-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-dodecahydro-1h-spiro[chrysene-2,3'-oxan]-1-oloxy]oxane-3,4,5-triol

2-(hydroxymethyl)-6-[6'-(1-hydroxypropan-2-yl)-4a,4b,7,10a-tetramethyl-7-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-dodecahydro-1h-spiro[chrysene-2,3'-oxan]-1-oloxy]oxane-3,4,5-triol

C42H72O15 (816.4871)


   

6-{[(3r,4s,5r,6s,7s,9s,11r,12s,13s,14r)-12-(acetyloxy)-14-[(2s)-butan-2-yl]-9-hydroxy-6-[(3-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-3,5,7,9,11,13-hexamethyl-2,10-dioxo-1-oxacyclotetradecan-4-yl]oxy}-4-methoxy-2,4-dimethyloxan-3-yl acetate

6-{[(3r,4s,5r,6s,7s,9s,11r,12s,13s,14r)-12-(acetyloxy)-14-[(2s)-butan-2-yl]-9-hydroxy-6-[(3-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-3,5,7,9,11,13-hexamethyl-2,10-dioxo-1-oxacyclotetradecan-4-yl]oxy}-4-methoxy-2,4-dimethyloxan-3-yl acetate

C42H72O15 (816.4871)


   

6-(3a,6,6,9b,11a-pentamethyl-7-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl)-2-methylheptane-2,3,4,5-tetrol

6-(3a,6,6,9b,11a-pentamethyl-7-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl)-2-methylheptane-2,3,4,5-tetrol

C42H72O15 (816.4871)


   

24-({4,5-dihydroxy-3-[(12-methyltetradecanoyl)oxy]oxan-2-yl}oxy)-2,6,10,15,19,23-hexamethyl-24-oxotetracosa-2,4,6,8,10,12,14,16,18,20,22-undecaenoic acid

24-({4,5-dihydroxy-3-[(12-methyltetradecanoyl)oxy]oxan-2-yl}oxy)-2,6,10,15,19,23-hexamethyl-24-oxotetracosa-2,4,6,8,10,12,14,16,18,20,22-undecaenoic acid

C50H72O9 (816.5176)