Exact Mass: 816.3618112
Exact Mass Matches: 816.3618112
Found 44 metabolites which its exact mass value is equals to given mass value 816.3618112
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Vinflunine
PGP(i-12:0/5-iso PGF2VI)
C36H66O16P2 (816.3825896000001)
PGP(i-12:0/5-iso PGF2VI) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/5-iso PGF2VI), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(5-iso PGF2VI/i-12:0)
C36H66O16P2 (816.3825896000001)
PGP(5-iso PGF2VI/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(5-iso PGF2VI/i-12:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
(20S)-3beta,21-dihydroxypregn-5-ene-22,26-lactone 1-O-alpha-L-rhamnopyranosyl-(1 -> 2)-[beta-D-xylopyranosyl-(1 -> 3)]-beta-D-glucopyranoside
Vinflunine
An organic heteropentacyclic compound and an organic heterotetracyclic compound that is vinorelbine in which the tetrahydropyridine moiety of the heterotetracyclic part of the molecule has been redced to the corresponding piperidine, and in which the ethyl group attached to this ring has been replaced by a 1,1-difluoroethyl group. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CA - Vinca alkaloids and analogues C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C932 - Vinca Alkaloid Compound C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids C1907 - Drug, Natural Product
(E)-N-[(2S,3R,4R,5R,6R)-2-[(2R,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[2-[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-12-methyltridec-2-enamide
(E)-N-[(2S,3R,4R,5R,6R)-2-[(2R,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[2-[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]tetradec-2-enamide
Tunicamycin A1
A nucleoside that is one of the homologues in the mixture that is tunicamycin, characterised by a 12-methyltridec-2-enoyl fatty acyl substituent on the amino group of the tunicamine moiety.
tunicamycin A2
A nucleoside that is one of the homologues in the mixture that is tunicamycin, characterised by a tetradec-2-enoyl fatty acyl substituent on the amino group of the tunicamine moiety.
(Z)-N-[(2S,3R,4R,5R,6R)-2-[(2S,3S,4S,5R,6S)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[(2R)-2-[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-12-methyltridec-2-enamide
[(2R,7S,8R,17S,18S,20R,22S)-8-acetyloxy-17-(furan-3-yl)-3,7-dihydroxy-22-(2-methoxy-2-oxoethyl)-2,5,11,18-tetramethyl-20-(2-methylbutanoyloxy)-15-oxo-10,12,16,21-tetraoxaheptacyclo[9.9.1.12,5.01,9.03,7.09,13.013,18]docosan-6-yl] 2,3-dimethyloxirane-2-carboxylate
[(2R,3S,7S,8R,17S,18S,20R,22S)-8-acetyloxy-17-(furan-3-yl)-3,7-dihydroxy-22-(2-methoxy-2-oxoethyl)-2,5,11,18-tetramethyl-20-(2-methylbutanoyloxy)-15-oxo-10,12,16,21-tetraoxaheptacyclo[9.9.1.12,5.01,9.03,7.09,13.013,18]docosan-6-yl] 2,3-dimethyloxirane-2-carboxylate
(2e)-n-[(2s,3r,4r,5s,6r)-2-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-6-[(2r)-2-[(2s,3s,4r,5s)-3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-12-methyltridec-2-enimidic acid
15-(17-bromo-1,5,7,9,11,13-hexahydroxy-16-methoxy-3,6,6,10-tetramethyl-15-methylideneheptadeca-2,16-dien-1-yl)-9-hydroxy-5,7,11,15-tetramethyl-2,14-dioxabicyclo[11.2.1]hexadec-4-en-3-one
(1r,4z,13s,15r)-15-[(1s,2e,5r,7s,9r,10r,11s,13s,16z)-17-bromo-1,5,7,9,11,13-hexahydroxy-16-methoxy-3,6,6,10-tetramethyl-15-methylideneheptadeca-2,16-dien-1-yl]-9-hydroxy-5,7,11,15-tetramethyl-2,14-dioxabicyclo[11.2.1]hexadec-4-en-3-one
n-[2-({4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl}oxy)-6-{2-[3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl}-4,5-dihydroxyoxan-3-yl]-12-methyltridec-2-enimidic acid
(1s,2s,4s,7s,8r,9s,12s,13r,14s,16r)-16-hydroxy-14-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-7-(hydroxymethyl)-9,13-dimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-6-one
(2e)-n-[(2s,3r,4r,5r,6r)-2-{[(2r,3r,4r,5s,6r)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-6-[(2r)-2-[(2r,3s,4r,5r)-3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-12-methyltridec-2-enimidic acid
(2e)-n-[(2s,3r,4r,5r,6r)-2-{[(2r,3r,4r,5s,6r)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-6-[(2r)-2-[(2r,3s,4r,5r)-3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]tetradec-2-enimidic acid
n-(2-{[5-({3-[(5-{6,8-dihydroxy-7-methoxy-1-methyl-4,9-dioxobenzo[f]isoindol-2-yl}pentyl)(hydroxy)carbamoyl]-1-hydroxypropylidene}amino)pentyl](hydroxy)carbamoyl}ethyl)-6-(n-hydroxyacetamido)hexanimidic acid
C39H56N6O13 (816.3905166000001)