Exact Mass: 804.4693382

Exact Mass Matches: 804.4693382

Found 355 metabolites which its exact mass value is equals to given mass value 804.4693382, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Okadaic acid

(2R)-3-[(2S,6R,8S,11R)-2-[(E,2R)-4-[(2S,2R,4R,6R,8aR)-4-hydroxy-2-[(1S,3S)-1-hydroxy-3-[(3R,6S)-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]butyl]-3-methylidenespiro[4a,7,8,8a-tetrahydro-4H-pyrano[3,2-b]pyran-6,5-oxolane]-2-yl]but-3-en-2-yl]-11-hydroxy-4-methyl-1,7-dioxaspiro[5.5]undec-4-en-8-yl]-2-hydroxy-2-methylpropanoic acid

C44H68O13 (804.4659678)


Okadaic acid is found in mollusks. Okadaic acid is found in the marine sponges Halichondria okadai and Halichondria melanodocia and shellfish. It is a metabolite of Prorocentrum lima. It is a diarrhetic shellfish toxin. Okadaic acid is a toxin that accumulates in bivalves and causes diarrhetic shellfish poisoning. The molecular formula of okadaic acid, which is a derivative of a C38 fatty acid, is C44H68O13. The IUPAC name of okadaic acid is (2R)-2-hydroxy-3-{(2S,5R,6R,8S)-5-hydroxy-[(1R,2E)-3-((2R,5R,6S,8R,8aS)-8-hydroxy-6-{(1S,3S)-1-hydroxy-3-[(3R,6S)-3-methyl-1,7-dioxaspiro[5.5]undec-2-yl]butyl}-7-methyleneoctahydro-3H,3H-spiro[furan-2,2-pyrano[3,2-b]pyran]-5-yl)-1-methylprop-2-en-1-yl]-10-methyl-1,7-dioxaspiro[5.5]undec-10-en-2-yl}-2-methylpropanoic acid. Okadaic acid was named from the marine sponge Halichondria okadai, from which okadaic acid was isolated for the first time. It has also been isolated from another marine sponge, H. malanodocia, as a cytotoxin. The real producer of okadaic acid is a marine dinoflagellate D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D002273 - Carcinogens D049990 - Membrane Transport Modulators D004791 - Enzyme Inhibitors D007476 - Ionophores

   

Oligomycin B

28-Oxooligomycin A

C45H72O12 (804.5023512)


An oligomycin with formula C45H72O12 that is oligomycin A in which the spirocyclic ring bearing the 2-hydroxypropyl substituent has been substituted by an oxo group at the carbon which is directly attached to the spirocentre. It is a nonselective inhibitor of the mitochondrial F1F0 ATP synthase. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D009840 - Oligomycins

   

Dinophysistoxin 2

2-hydroxy-3-{5-hydroxy-8-[(3E)-4-[8-hydroxy-6-(1-hydroxy-3-{11-methyl-1,7-dioxaspiro[5.5]undecan-2-yl}butyl)-7-methylidene-hexahydro-3H-spiro[oxolane-2,2-pyrano[3,2-b]pyran]-5-yl]but-3-en-2-yl]-10-methyl-1,7-dioxaspiro[5.5]undec-10-en-2-yl}-2-methylpropanoic acid

C44H68O13 (804.4659678)


Dinophysistoxin 2 is found in mollusks. Dinophysistoxin 2 is a metabolite of Dinophysis species. Metabolite of Dinophysis subspecies Dinophysistoxin 2 is found in mollusks. D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins

   

25-O-Deacetylrifabutin

2,13,15,17,32-pentahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-1-(2-methylpropyl)-8,33-dioxa-24,27,29-triazaspiro[pentacyclo[23.6.1.1^{4,7}.0^{5,31}.0^{26,30}]tritriacontane-28,4-piperidine]-1(32),2,4,9,19,21,24,26,30-nonaene-6,23-dione

C44H60N4O10 (804.430922)


   

PA(19:0/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-(nonadecanoyloxy)propoxy]phosphonic acid

C42H77O12P (804.5152372)


PA(19:0/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(19:0/6 keto-PGF1alpha), in particular, consists of one chain of one nonadecanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/19:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-(nonadecanoyloxy)propoxy]phosphonic acid

C42H77O12P (804.5152372)


PA(6 keto-PGF1alpha/19:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/19:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of nonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(19:0/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-(nonadecanoyloxy)propoxy]phosphonic acid

C42H77O12P (804.5152372)


PA(19:0/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(19:0/TXB2), in particular, consists of one chain of one nonadecanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/19:0)

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-(nonadecanoyloxy)propoxy]phosphonic acid

C42H77O12P (804.5152372)


PA(TXB2/19:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/19:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of nonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:2(11Z,14Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphonic acid

C45H73O10P (804.4941087999999)


PA(20:2(11Z,14Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:2(11Z,14Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:2(11Z,14Z))

[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphonic acid

C45H73O10P (804.4941087999999)


PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:2(11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:2(11Z,14Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:2(11Z,14Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphonic acid

C45H73O10P (804.4941087999999)


PA(20:2(11Z,14Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:2(11Z,14Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:2(11Z,14Z))

[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphonic acid

C45H73O10P (804.4941087999999)


PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:2(11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:2(11Z,14Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:4(7Z,10Z,13Z,16Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy]phosphonic acid

C45H73O10P (804.4941087999999)


PA(22:4(7Z,10Z,13Z,16Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:4(7Z,10Z,13Z,16Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:4(7Z,10Z,13Z,16Z))

[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy]phosphonic acid

C45H73O10P (804.4941087999999)


PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:4(7Z,10Z,13Z,16Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy]phosphonic acid

C45H73O10P (804.4941087999999)


PA(22:4(7Z,10Z,13Z,16Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:4(7Z,10Z,13Z,16Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:4(7Z,10Z,13Z,16Z))

[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy]phosphonic acid

C45H73O10P (804.4941087999999)


PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:4(7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy]phosphonic acid

C45H73O10P (804.4941087999999)


PA(22:4(7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:4(7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:4(7Z,10Z,13Z,16Z))

[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy]phosphonic acid

C45H73O10P (804.4941087999999)


PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]propoxy]phosphonic acid

C45H73O10P (804.4941087999999)


PA(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(4Z,7Z,10Z,13Z,16Z))

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]propoxy]phosphonic acid

C45H73O10P (804.4941087999999)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(4Z,7Z,10Z,13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]propoxy]phosphonic acid

C45H73O10P (804.4941087999999)


PA(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(7Z,10Z,13Z,16Z,19Z))

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]propoxy]phosphonic acid

C45H73O10P (804.4941087999999)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-19:0/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(17-methyloctadecanoyl)oxy]propoxy]phosphonic acid

C42H77O12P (804.5152372)


PA(i-19:0/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-19:0/6 keto-PGF1alpha), in particular, consists of one chain of one 17-methyloctadecanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/i-19:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(17-methyloctadecanoyl)oxy]propoxy]phosphonic acid

C42H77O12P (804.5152372)


PA(6 keto-PGF1alpha/i-19:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/i-19:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 17-methyloctadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-19:0/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(17-methyloctadecanoyl)oxy]propoxy]phosphonic acid

C42H77O12P (804.5152372)


PA(i-19:0/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-19:0/TXB2), in particular, consists of one chain of one 17-methyloctadecanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/i-19:0)

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(17-methyloctadecanoyl)oxy]propoxy]phosphonic acid

C42H77O12P (804.5152372)


PA(TXB2/i-19:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/i-19:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 17-methyloctadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-(hexadecanoyloxy)propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C42H77O12P (804.5152372)


PG(16:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(16:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-(hexadecanoyloxy)propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C42H77O12P (804.5152372)


PG(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C42H77O12P (804.5152372)


PG(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z))

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C42H77O12P (804.5152372)


PG(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C42H77O12P (804.5152372)


PG(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z))

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C42H77O12P (804.5152372)


PG(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-15:0/PGE2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C41H73O13P (804.4788537999999)


PG(a-15:0/PGE2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-15:0/PGE2), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGE2/a-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C41H73O13P (804.4788537999999)


PG(PGE2/a-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGE2/a-15:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-15:0/PGD2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C41H73O13P (804.4788537999999)


PG(a-15:0/PGD2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-15:0/PGD2), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGD2/a-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C41H73O13P (804.4788537999999)


PG(PGD2/a-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGD2/a-15:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(12-methyltetradecanoyl)oxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C41H73O13P (804.4788537999999)


PG(a-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(12-methyltetradecanoyl)oxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C41H73O13P (804.4788537999999)


PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-15:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-15:0/PGE2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C41H73O13P (804.4788537999999)


PG(i-15:0/PGE2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-15:0/PGE2), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGE2/i-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C41H73O13P (804.4788537999999)


PG(PGE2/i-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGE2/i-15:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-15:0/PGD2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C41H73O13P (804.4788537999999)


PG(i-15:0/PGD2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-15:0/PGD2), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGD2/i-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C41H73O13P (804.4788537999999)


PG(PGD2/i-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGD2/i-15:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(13-methyltetradecanoyl)oxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C41H73O13P (804.4788537999999)


PG(i-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(13-methyltetradecanoyl)oxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C41H73O13P (804.4788537999999)


PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-15:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(14-methylpentadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C42H77O12P (804.5152372)


PG(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(14-methylpentadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C42H77O12P (804.5152372)


PG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   
   

Antibiotic TMC 171A

Antibiotic TMC 171A

C41H72O15 (804.4870962)


   

Antibiotic TMC 171C

Antibiotic TMC 171C

C41H72O15 (804.4870962)


   

Antibiotic TMC 171B

Antibiotic TMC 171B

C41H72O15 (804.4870962)


   

(20R,24R)-29-O-[3-O-methyl-beta-D-xylopyranosyl-(1->4)-3-O-methyl-beta-D-xylopyranosyl]-24-ethyl-5alpha-cholestane-3beta,4beta,6alpha,8,15beta,16beta,29-heptaol|milleporoside A

(20R,24R)-29-O-[3-O-methyl-beta-D-xylopyranosyl-(1->4)-3-O-methyl-beta-D-xylopyranosyl]-24-ethyl-5alpha-cholestane-3beta,4beta,6alpha,8,15beta,16beta,29-heptaol|milleporoside A

C41H72O15 (804.4870962)


   

okadaic acid

(2R)-3-[(2S,6R,8S,11R)-2-[(2R)-4-[(2S,2R,4R,4aS,6R,8aR)-4-hydroxy-2-[(1S,3S)-1-hydroxy-3-[(2S,3R,6S)-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]butyl]-3-methylidenespiro[4a,7,8,8a-tetrahydro-4H-pyrano[3,2-b]pyran-6,5-oxolane]-2-yl]but-3-en-2-yl]-11-hydroxy-4-methyl-1,7-dioxaspiro[5.5]undec-4-en-8-yl]-2-hydroxy-2-methylpropanoic acid

C44H68O13 (804.4659678)


D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D002273 - Carcinogens D049990 - Membrane Transport Modulators D004791 - Enzyme Inhibitors D007476 - Ionophores A polycyclic ether that is produced by several species of dinoflagellates, and is known to accumulate in both marine sponges and shellfish. A polyketide, polyether derivative of a C38 fatty acid, it is one of the primary causes of diarrhetic shellfish poisoning (DSP). It is a potent inhibitor of specific protein phosphatases and is known to have a variety of negative effects on cells.

   
   
   
   
   

ent-14-labden-8beta-ol 13alpha-O-[beta-D-quinovopyranosyl-(1->2)-3-O-acetyl-alpha-L-rhamnopyranosyl]-19-O-alpha-L-rhamnopyranoside

ent-14-labden-8beta-ol 13alpha-O-[beta-D-quinovopyranosyl-(1->2)-3-O-acetyl-alpha-L-rhamnopyranosyl]-19-O-alpha-L-rhamnopyranoside

C40H68O16 (804.4507128)


   

41-demethylhomooligomycin B

41-demethylhomooligomycin B

C45H72O12 (804.5023512)


   
   

C45H72O12_(1S,4E,5R,6R,6R,7S,8R,10S,12R,14S,16S,18E,20E,22S,25R,27R,28R,29S)-22-Ethyl-7,11,14,15-tetrahydroxy-6-[(2S)-2-hydroxypropyl]-5,6,8,10,12,14,16,28,29-nonamethyl-5,6-dihydro-3H,9H,13H-spiro[2,26-dioxabicyclo[23.3.1]nonacosa-4,18,20-triene-27,2-pyran]-3,3,9,13(4H)-tetrone

NCGC00384511-01_C45H72O12_(1S,4E,5R,6R,6R,7S,8R,10S,12R,14S,16S,18E,20E,22S,25R,27R,28R,29S)-22-Ethyl-7,11,14,15-tetrahydroxy-6-[(2S)-2-hydroxypropyl]-5,6,8,10,12,14,16,28,29-nonamethyl-5,6-dihydro-3H,9H,13H-spiro[2,26-dioxabicyclo[23.3.1]nonacosa-4,18,20-triene-27,2-pyran]-3,3,9,13(4H)-tetrone

C45H72O12 (804.5023512)


   
   

Okadaic acid (-H2O)

Okadaic acid (-H2O)

C44H68O13 (804.4659678)


   

Okadaic acid (+NH4)

Okadaic acid (+NH4)

C44H68O13 (804.4659678)


   

25-O-Deacetylrifabutin

25-O-Deacetyl Rifabutin

C44H60N4O10 (804.430922)


   

PG(17:2(9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-(9Z,12Z-heptadecadienoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phospho-(1-sn-glycerol)

C45H73O10P (804.4941087999999)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/17:2(9Z,12Z))

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C45H73O10P (804.4941087999999)


   

PI(12:0/20:3(8Z,11Z,14Z))

1-dodecanoyl-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phospho-(1-myo-inositol)

C41H73O13P (804.4788537999999)


   

PI(14:0/18:3(6Z,9Z,12Z))

1-tetradecanoyl-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phospho-(1-myo-inositol)

C41H73O13P (804.4788537999999)


   

PI(14:1(9Z)/18:2(9Z,12Z))

1-(9Z-tetradecenoyl)-2-(9Z,12Z-octadecadienoyl)-glycero-3-phospho-(1-myo-inositol)

C41H73O13P (804.4788537999999)


   

PI(15:1(9Z)/17:2(9Z,12Z))

1-(9Z-pentadecenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-myo-inositol)

C41H73O13P (804.4788537999999)


   

PI(17:2(9Z,12Z)/15:1(9Z))

1-(9Z,12Z-heptadecadienoyl)-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C41H73O13P (804.4788537999999)


   

PI(18:2(9Z,12Z)/14:1(9Z))

1-(9Z,12Z-octadecadienoyl)-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-myo-inositol)

C41H73O13P (804.4788537999999)


   

PI(18:3(6Z,9Z,12Z)/14:0)

1-(6Z,9Z,12Z-octadecatrienoyl)-2-tetradecanoyl-glycero-3-phospho-(1-myo-inositol)

C41H73O13P (804.4788537999999)


   

PI(18:3(9Z,12Z,15Z)/14:0)

1-(9Z,12Z,15Z-octadecatrienoyl)-2-tetradecanoyl-glycero-3-phospho-(1-myo-inositol)

C41H73O13P (804.4788537999999)


   

PI(20:3(8Z,11Z,14Z)/12:0)

1-(8Z,11Z,14Z-eicosatrienoyl)-2-dodecanoyl-glycero-3-phospho-(1-myo-inositol)

C41H73O13P (804.4788537999999)


   

PI(14:0/18:3(9Z,12Z,15Z))

1-tetradecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phospho-(1-myo-inositol)

C41H73O13P (804.4788537999999)


   

PI(P-16:0/17:2(9Z,12Z))

1-(1Z-hexadecenyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-myo-inositol)

C42H77O12P (804.5152372)


   

PG 39:8

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C45H73O10P (804.4941087999999)


   

PI 32:3

1-(9Z,12Z-heptadecadienoyl)-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C41H73O13P (804.4788537999999)


   

PI O-33:3

1-(1Z-hexadecenyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-myo-inositol)

C42H77O12P (804.5152372)


   

z-arg-leu-val-azagly-ile-val-ome

z-arg-leu-val-azagly-ile-val-ome

C38H64N10O9 (804.4857494)


   

Dinophysistoxin 2

Dinophysistoxin 2

C44H68O13 (804.4659678)


A ketal that is a rare marine toxin structurally related to okadaic acid. Found yearly along with okadaic acid in Portuguese shellfish, its presence has been correlated with the occurrence of Dinophysis acta. D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins

   

(9Z,19Z,21Z)-2,13,15,17,32-pentahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-1-(2-methylpropyl)spiro[8,33-dioxa-24,27,29-triazapentacyclo[23.6.1.14,7.05,31.026,30]tritriaconta-1(31),2,4,9,19,21,25(32),26,29-nonaene-28,4-piperidine]-6,23-dione

(9Z,19Z,21Z)-2,13,15,17,32-pentahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-1-(2-methylpropyl)spiro[8,33-dioxa-24,27,29-triazapentacyclo[23.6.1.14,7.05,31.026,30]tritriaconta-1(31),2,4,9,19,21,25(32),26,29-nonaene-28,4-piperidine]-6,23-dione

C44H60N4O10 (804.430922)


   
   
   
   
   
   
   
   
   
   
   

PA(19:0/6 keto-PGF1alpha)

PA(19:0/6 keto-PGF1alpha)

C42H77O12P (804.5152372)


   

PA(6 keto-PGF1alpha/19:0)

PA(6 keto-PGF1alpha/19:0)

C42H77O12P (804.5152372)


   
   
   

PA(i-19:0/6 keto-PGF1alpha)

PA(i-19:0/6 keto-PGF1alpha)

C42H77O12P (804.5152372)


   

PA(6 keto-PGF1alpha/i-19:0)

PA(6 keto-PGF1alpha/i-19:0)

C42H77O12P (804.5152372)


   

PG(16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PG(16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C42H77O12P (804.5152372)


   

PG(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0)

PG(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0)

C42H77O12P (804.5152372)


   

PG(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PG(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C42H77O12P (804.5152372)


   

PG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0)

PG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0)

C42H77O12P (804.5152372)


   

PG(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10))

PG(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10))

C42H77O12P (804.5152372)


   

PG(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z))

PG(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z))

C42H77O12P (804.5152372)


   

PG(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10))

PG(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10))

C42H77O12P (804.5152372)


   

PG(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z))

PG(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z))

C42H77O12P (804.5152372)


   

PG(a-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PG(a-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C41H73O13P (804.4788537999999)


   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-15:0)

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-15:0)

C41H73O13P (804.4788537999999)


   

PG(i-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PG(i-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C41H73O13P (804.4788537999999)


   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-15:0)

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-15:0)

C41H73O13P (804.4788537999999)


   

PA(20:2(11Z,14Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PA(20:2(11Z,14Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C45H73O10P (804.4941087999999)


   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:2(11Z,14Z))

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:2(11Z,14Z))

C45H73O10P (804.4941087999999)


   

PA(20:2(11Z,14Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PA(20:2(11Z,14Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C45H73O10P (804.4941087999999)


   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:2(11Z,14Z))

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:2(11Z,14Z))

C45H73O10P (804.4941087999999)


   

PA(22:4(7Z,10Z,13Z,16Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PA(22:4(7Z,10Z,13Z,16Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C45H73O10P (804.4941087999999)


   

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:4(7Z,10Z,13Z,16Z))

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:4(7Z,10Z,13Z,16Z))

C45H73O10P (804.4941087999999)


   

PA(22:4(7Z,10Z,13Z,16Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PA(22:4(7Z,10Z,13Z,16Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C45H73O10P (804.4941087999999)


   

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:4(7Z,10Z,13Z,16Z))

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:4(7Z,10Z,13Z,16Z))

C45H73O10P (804.4941087999999)


   

PA(22:4(7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PA(22:4(7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C45H73O10P (804.4941087999999)


   

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:4(7Z,10Z,13Z,16Z))

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:4(7Z,10Z,13Z,16Z))

C45H73O10P (804.4941087999999)


   

PA(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

C45H73O10P (804.4941087999999)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(4Z,7Z,10Z,13Z,16Z))

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(4Z,7Z,10Z,13Z,16Z))

C45H73O10P (804.4941087999999)


   

PA(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

C45H73O10P (804.4941087999999)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(7Z,10Z,13Z,16Z,19Z))

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(7Z,10Z,13Z,16Z,19Z))

C45H73O10P (804.4941087999999)


   
   

3-[18-(2-carboxyethyl)-7-ethenyl-17-(hydroxymethylidene)-12-[(1S)-1-hydroxy-5,9,13-trimethyltetradecyl]-3,8,13-trimethyl-22H-porphyrin-2-yl]propanoic acid

3-[18-(2-carboxyethyl)-7-ethenyl-17-(hydroxymethylidene)-12-[(1S)-1-hydroxy-5,9,13-trimethyltetradecyl]-3,8,13-trimethyl-22H-porphyrin-2-yl]propanoic acid

C49H64N4O6 (804.4825604)


   

cyclo[DL-Phe-DL-Val-DL-Phe-Unk]

cyclo[DL-Phe-DL-Val-DL-Phe-Unk]

C44H66N7O7+ (804.5023466)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (Z)-tridec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (Z)-tridec-9-enoate

C42H77O12P (804.5152372)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (Z)-tetradec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (Z)-tetradec-9-enoate

C42H77O12P (804.5152372)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C42H77O12P (804.5152372)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate

C42H77O12P (804.5152372)


   

[1-heptadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-heptadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C42H77O12P (804.5152372)


   

[1-[(Z)-heptadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[(Z)-heptadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C42H77O12P (804.5152372)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] pentadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] pentadecanoate

C42H77O12P (804.5152372)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C42H77O12P (804.5152372)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] heptadecanoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] heptadecanoate

C42H77O12P (804.5152372)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C42H77O12P (804.5152372)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (Z)-pentadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (Z)-pentadec-9-enoate

C42H77O12P (804.5152372)


   

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C42H77O12P (804.5152372)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

C42H77O12P (804.5152372)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C42H77O12P (804.5152372)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C42H77O12P (804.5152372)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C42H77O12P (804.5152372)


   

[1-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] undecanoate

[1-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] undecanoate

C42H77O12P (804.5152372)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] tridecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] tridecanoate

C42H77O12P (804.5152372)


   

(1S,5R,6R,6R,7S,8R,10S,12R,14S,16S,22S,25R,27R,28R,29S)-22-ethyl-7,11,14,15-tetrahydroxy-6-[(2S)-2-hydroxypropyl]-5,6,8,10,12,14,16,28,29-nonamethylspiro[2,26-dioxabicyclo[23.3.1]nonacosa-4,18,20-triene-27,2-oxane]-3,3,9,13-tetrone

(1S,5R,6R,6R,7S,8R,10S,12R,14S,16S,22S,25R,27R,28R,29S)-22-ethyl-7,11,14,15-tetrahydroxy-6-[(2S)-2-hydroxypropyl]-5,6,8,10,12,14,16,28,29-nonamethylspiro[2,26-dioxabicyclo[23.3.1]nonacosa-4,18,20-triene-27,2-oxane]-3,3,9,13-tetrone

C45H72O12 (804.5023512)


   

[1-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H73O10P (804.4941087999999)


   

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C41H72O15 (804.4870962)


   

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C41H72O15 (804.4870962)


   

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C41H72O15 (804.4870962)


   

[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C41H72O15 (804.4870962)


   

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C41H72O15 (804.4870962)


   

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C41H72O15 (804.4870962)


   

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C41H72O15 (804.4870962)


   

[3,4,5-trihydroxy-6-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[6-[2-[(Z)-heptadec-9-enoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(Z)-heptadec-9-enoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[3,4,5-trihydroxy-6-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[3,4,5-trihydroxy-6-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[6-[3-dodecanoyloxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-dodecanoyloxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[6-[3-heptadecanoyloxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-heptadecanoyloxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[6-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[3,4,5-trihydroxy-6-[2-[(Z)-octadec-9-enoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(Z)-octadec-9-enoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[1-decanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-decanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C41H72O15 (804.4870962)


   

[3,4,5-trihydroxy-6-[2-[(Z)-nonadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(Z)-nonadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[3,4,5-trihydroxy-6-[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[2-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (Z)-tridec-9-enoate

[2-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (Z)-tridec-9-enoate

C41H72O15 (804.4870962)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (9Z,11E)-13-hydroperoxyoctadeca-9,11-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (9Z,11E)-13-hydroperoxyoctadeca-9,11-dienoate

C42H77O12P (804.5152372)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (5Z,8Z,14E)-11,12-dihydroxyicosa-5,8,14-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (5Z,8Z,14E)-11,12-dihydroxyicosa-5,8,14-trienoate

C42H77O12P (804.5152372)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C41H73O13P (804.4788537999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C41H73O13P (804.4788537999999)


   

[1-dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C41H73O13P (804.4788537999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H73O10P (804.4941087999999)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-hexadec-9-enoate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-hexadec-9-enoate

C41H73O13P (804.4788537999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C41H73O13P (804.4788537999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C41H73O13P (804.4788537999999)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] hexadecanoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] hexadecanoate

C41H73O13P (804.4788537999999)


   

[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C41H73O13P (804.4788537999999)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-6-[(2S)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-6-[(2S)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C41H73O13P (804.4788537999999)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

C41H73O13P (804.4788537999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-7-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-7-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoate

C45H73O10P (804.4941087999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadec-17-enoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadec-17-enoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-4-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-4-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

C41H73O13P (804.4788537999999)


   

[(2S)-2-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-2-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C41H73O13P (804.4788537999999)


   

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C41H73O13P (804.4788537999999)


   

[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C41H73O13P (804.4788537999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-11-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-11-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S)-2-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2S)-2-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C41H73O13P (804.4788537999999)


   

[(2S,3S,6S)-6-[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-4-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-4-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H73O10P (804.4941087999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-9-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-9-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoate

C45H73O10P (804.4941087999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-13-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-13-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-13-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-13-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-6-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-6-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C41H73O13P (804.4788537999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-9-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-9-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadec-17-enoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadec-17-enoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   
   

[1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C41H72O15 (804.4870962)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

C41H73O13P (804.4788537999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-hexadec-7-enoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-hexadec-7-enoate

C41H73O13P (804.4788537999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-7-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-7-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C41H73O13P (804.4788537999999)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C41H73O13P (804.4788537999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-6-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-6-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-6-[(2S)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   
   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] hexadecanoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] hexadecanoate

C41H73O13P (804.4788537999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-11-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-11-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2S,3S,6S)-6-[3-heptadecanoyloxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[3-heptadecanoyloxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoate

C45H73O10P (804.4941087999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C41H73O13P (804.4788537999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H76O12S (804.5057216)


   

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (9E,12E)-heptadeca-9,12-dienoate

C41H73O13P (804.4788537999999)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H73O10P (804.4941087999999)


   

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

C41H73O13P (804.4788537999999)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (14E,17E,20E)-tricosa-14,17,20-trienoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (14E,17E,20E)-tricosa-14,17,20-trienoate

C45H73O10P (804.4941087999999)


   

[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C41H73O13P (804.4788537999999)


   

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

C41H73O13P (804.4788537999999)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C41H73O13P (804.4788537999999)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C41H73O13P (804.4788537999999)


   

MGDG(39:12)

MGDG(18:2_21:10)

C48H68O10 (804.4812228000001)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PI P-16:0/17:2 or PI O-16:1/17:2

PI P-16:0/17:2 or PI O-16:1/17:2

C42H77O12P (804.5152372)


   
   

PI P-16:1/17:1 or PI O-16:2/17:1

PI P-16:1/17:1 or PI O-16:2/17:1

C42H77O12P (804.5152372)


   
   
   
   

PI P-18:1/15:1 or PI O-18:2/15:1

PI P-18:1/15:1 or PI O-18:2/15:1

C42H77O12P (804.5152372)


   
   
   

PI P-33:2 or PI O-33:3

PI P-33:2 or PI O-33:3

C42H77O12P (804.5152372)


   
   
   
   
   
   
   

(2r,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl (2e,4s,5s,6e,8s,9s,10e,12s,13s,14e,16s,18s)-5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

(2r,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl (2e,4s,5s,6e,8s,9s,10e,12s,13s,14e,16s,18s)-5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

C41H72O15 (804.4870962)


   

28-ethyl-7,11,14,15-tetrahydroxy-6'-(2-hydroxypropyl)-5',6,8,10,12,14,16,22,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,3',9,13-tetrone

28-ethyl-7,11,14,15-tetrahydroxy-6'-(2-hydroxypropyl)-5',6,8,10,12,14,16,22,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,3',9,13-tetrone

C45H72O12 (804.5023512)


   

3-(acetyloxy)-15-[2-(acetyloxy)-5-[1,2-bis(acetyloxy)-2-methylpropyl]oxolan-3-yl]-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 3-phenylprop-2-enoate

3-(acetyloxy)-15-[2-(acetyloxy)-5-[1,2-bis(acetyloxy)-2-methylpropyl]oxolan-3-yl]-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 3-phenylprop-2-enoate

C47H64O11 (804.4448394)


   

(1r,4e,5's,6s,6's,7r,8s,10r,11r,12s,14r,15s,16r,18e,20e,22r,25s,27s,28s,29r)-22-ethyl-7,11,14,15-tetrahydroxy-6'-[(2r)-2-hydroxypropyl]-5',6,8,10,12,14,16,28,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,3',9,13-tetrone

(1r,4e,5's,6s,6's,7r,8s,10r,11r,12s,14r,15s,16r,18e,20e,22r,25s,27s,28s,29r)-22-ethyl-7,11,14,15-tetrahydroxy-6'-[(2r)-2-hydroxypropyl]-5',6,8,10,12,14,16,28,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,3',9,13-tetrone

C45H72O12 (804.5023512)


   

2-hydroxy-3-(5-hydroxy-8-{4-[8'-hydroxy-6'-(1-hydroxy-3-{3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl}butyl)-7'-methylidene-hexahydrospiro[oxolane-2,2'-pyrano[3,2-b]pyran]-5-yl]but-3-en-2-yl}-10-methyl-1,7-dioxaspiro[5.5]undec-10-en-2-yl)-2-methylpropanoic acid

2-hydroxy-3-(5-hydroxy-8-{4-[8'-hydroxy-6'-(1-hydroxy-3-{3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl}butyl)-7'-methylidene-hexahydrospiro[oxolane-2,2'-pyrano[3,2-b]pyran]-5-yl]but-3-en-2-yl}-10-methyl-1,7-dioxaspiro[5.5]undec-10-en-2-yl)-2-methylpropanoic acid

C44H68O13 (804.4659678)


   

(4z,18z,20z)-28-ethyl-7,11,14,15-tetrahydroxy-6'-(2-hydroxypropyl)-5',6,8,10,12,14,16,22,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,3',9,13-tetrone

(4z,18z,20z)-28-ethyl-7,11,14,15-tetrahydroxy-6'-(2-hydroxypropyl)-5',6,8,10,12,14,16,22,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,3',9,13-tetrone

C45H72O12 (804.5023512)


   

(1r,2r,3r,3as,3bs,5r,5as,7s,9as,9br,11ar)-1-[(2r,5r)-5-(2-{[(2r,3r,4s,5r)-3-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-5-[(1r)-1,2-dihydroxyethyl]-4-hydroxyoxolan-2-yl]oxy}ethyl)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,7-pentol

(1r,2r,3r,3as,3bs,5r,5as,7s,9as,9br,11ar)-1-[(2r,5r)-5-(2-{[(2r,3r,4s,5r)-3-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-5-[(1r)-1,2-dihydroxyethyl]-4-hydroxyoxolan-2-yl]oxy}ethyl)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,7-pentol

C41H72O15 (804.4870962)


   

n-{3-[(6s,9s,12s,15s,18s,23as)-12,18-dibenzyl-6-[(2s)-butan-2-yl]-1,4,7,10,13,16-hexahydroxy-9-(hydroxymethyl)-19-oxo-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-15-yl]propyl}guanidine

n-{3-[(6s,9s,12s,15s,18s,23as)-12,18-dibenzyl-6-[(2s)-butan-2-yl]-1,4,7,10,13,16-hexahydroxy-9-(hydroxymethyl)-19-oxo-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-15-yl]propyl}guanidine

C40H56N10O8 (804.4282376000001)


   

(2r,3r,4r,5r)-1,2,4,5,6-pentahydroxyhexan-3-yl (2e,4s,5s,6e,8s,9s,10e,12s,13s,14e,16s,18s)-5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

(2r,3r,4r,5r)-1,2,4,5,6-pentahydroxyhexan-3-yl (2e,4s,5s,6e,8s,9s,10e,12s,13s,14e,16s,18s)-5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

C41H72O15 (804.4870962)


   

3-[17-(dodecan-2-yl)-6,9,12,15,16-pentahydroxy-13-(hydroxymethyl)-10-(1h-indol-3-ylmethyl)-2-oxo-4-phenyl-1-oxa-5,8,11,14-tetraazacycloheptadeca-5,8,11,14-tetraen-7-yl]propanimidic acid

3-[17-(dodecan-2-yl)-6,9,12,15,16-pentahydroxy-13-(hydroxymethyl)-10-(1h-indol-3-ylmethyl)-2-oxo-4-phenyl-1-oxa-5,8,11,14-tetraazacycloheptadeca-5,8,11,14-tetraen-7-yl]propanimidic acid

C43H60N6O9 (804.4421550000001)


   

(2r,3s,4r,5r)-1,3,4,5,6-pentahydroxyhexan-2-yl (2e,4s,5s,6e,8s,9s,10e,12s,13s,14e,16s,18s)-5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

(2r,3s,4r,5r)-1,3,4,5,6-pentahydroxyhexan-2-yl (2e,4s,5s,6e,8s,9s,10e,12s,13s,14e,16s,18s)-5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

C41H72O15 (804.4870962)


   

2-hydroxy-3-{5-hydroxy-8-[(3e)-4-[8'-hydroxy-6'-(1-hydroxy-3-{11-methyl-1,7-dioxaspiro[5.5]undecan-2-yl}butyl)-7'-methylidene-hexahydrospiro[oxolane-2,2'-pyrano[3,2-b]pyran]-5-yl]but-3-en-2-yl]-10-methyl-1,7-dioxaspiro[5.5]undec-10-en-2-yl}-2-methylpropanoic acid

2-hydroxy-3-{5-hydroxy-8-[(3e)-4-[8'-hydroxy-6'-(1-hydroxy-3-{11-methyl-1,7-dioxaspiro[5.5]undecan-2-yl}butyl)-7'-methylidene-hexahydrospiro[oxolane-2,2'-pyrano[3,2-b]pyran]-5-yl]but-3-en-2-yl]-10-methyl-1,7-dioxaspiro[5.5]undec-10-en-2-yl}-2-methylpropanoic acid

C44H68O13 (804.4659678)


   

(3e,5e,7r,8r,9e,11e,17r,18r,19e,21e,23r,24s,25r,26s)-8,18,24-trihydroxy-26-[(1e,4s)-4-hydroxy-4-[(2s,3r,4s,5s)-3-hydroxy-4-methoxy-2-methyl-5-propyloxolan-2-yl]but-1-en-1-yl]-7,17,25-trimethoxy-11,13,21,23-tetramethyl-1-oxacyclohexacosa-3,5,9,11,19,21-hexaen-2-one

(3e,5e,7r,8r,9e,11e,17r,18r,19e,21e,23r,24s,25r,26s)-8,18,24-trihydroxy-26-[(1e,4s)-4-hydroxy-4-[(2s,3r,4s,5s)-3-hydroxy-4-methoxy-2-methyl-5-propyloxolan-2-yl]but-1-en-1-yl]-7,17,25-trimethoxy-11,13,21,23-tetramethyl-1-oxacyclohexacosa-3,5,9,11,19,21-hexaen-2-one

C45H72O12 (804.5023512)


   

(2s,3r,4r,5s,6s)-2-{[(3s)-5-[(1s,2r,4as,5r,8ar)-2-hydroxy-2,5,8a-trimethyl-5-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)-hexahydro-1h-naphthalen-1-yl]-3-methylpent-1-en-3-yl]oxy}-5-hydroxy-6-methyl-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-4-yl acetate

(2s,3r,4r,5s,6s)-2-{[(3s)-5-[(1s,2r,4as,5r,8ar)-2-hydroxy-2,5,8a-trimethyl-5-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)-hexahydro-1h-naphthalen-1-yl]-3-methylpent-1-en-3-yl]oxy}-5-hydroxy-6-methyl-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-4-yl acetate

C40H68O16 (804.4507128)


   

(2r)-1-[(2s)-2-amino-3-phenylpropanoyl]-n-[(2s)-1-[(2s)-2-{[(1s)-1-{[(1s)-1-(c-hydroxycarbonimidoyl)-3-methylbutyl]-c-hydroxycarbonimidoyl}-2-(1h-indol-3-yl)ethyl]-c-hydroxycarbonimidoyl}pyrrolidin-1-yl]-1-oxo-3-phenylpropan-2-yl]pyrrolidine-2-carboximidic acid

(2r)-1-[(2s)-2-amino-3-phenylpropanoyl]-n-[(2s)-1-[(2s)-2-{[(1s)-1-{[(1s)-1-(c-hydroxycarbonimidoyl)-3-methylbutyl]-c-hydroxycarbonimidoyl}-2-(1h-indol-3-yl)ethyl]-c-hydroxycarbonimidoyl}pyrrolidin-1-yl]-1-oxo-3-phenylpropan-2-yl]pyrrolidine-2-carboximidic acid

C45H56N8O6 (804.4322596)


   

8,18,24-trihydroxy-26-{4-hydroxy-4-[3-(2-hydroxy-1-methoxypentyl)-2-methyloxiran-2-yl]but-1-en-1-yl}-7,17,25-trimethoxy-11,13,21,23-tetramethyl-1-oxacyclohexacosa-3,5,9,11,19,21-hexaen-2-one

8,18,24-trihydroxy-26-{4-hydroxy-4-[3-(2-hydroxy-1-methoxypentyl)-2-methyloxiran-2-yl]but-1-en-1-yl}-7,17,25-trimethoxy-11,13,21,23-tetramethyl-1-oxacyclohexacosa-3,5,9,11,19,21-hexaen-2-one

C45H72O12 (804.5023512)


   

6-[(2s,4r,5s,6s,8r)-8-[(2s,3r,4r,5s,7r,9s,10s,12r,15r)-2-[(2r,4r,5s)-5-(ethoxycarbonyl)-4-hydroxyoxolan-2-yl]-15-hydroxy-3-methoxy-2,4,10,12-tetramethyl-1,6,8-trioxadispiro[4.1.5⁷.3⁵]pentadec-13-en-9-yl]-5-hydroxy-4,6-dimethyl-7-oxononan-2-yl]-2-hydroxy-3-methylbenzoic acid

6-[(2s,4r,5s,6s,8r)-8-[(2s,3r,4r,5s,7r,9s,10s,12r,15r)-2-[(2r,4r,5s)-5-(ethoxycarbonyl)-4-hydroxyoxolan-2-yl]-15-hydroxy-3-methoxy-2,4,10,12-tetramethyl-1,6,8-trioxadispiro[4.1.5⁷.3⁵]pentadec-13-en-9-yl]-5-hydroxy-4,6-dimethyl-7-oxononan-2-yl]-2-hydroxy-3-methylbenzoic acid

C43H64O14 (804.4295844)


   

(3e,5e,7r,8r,9e,11e,13r,17r,18r,19e,21e,23r,24s,25r,26s)-8,18,24-trihydroxy-26-[(1e,4s)-4-hydroxy-4-[(2s,3r,4s,5s)-3-hydroxy-4-methoxy-2-methyl-5-propyloxolan-2-yl]but-1-en-1-yl]-7,17,25-trimethoxy-11,13,21,23-tetramethyl-1-oxacyclohexacosa-3,5,9,11,19,21-hexaen-2-one

(3e,5e,7r,8r,9e,11e,13r,17r,18r,19e,21e,23r,24s,25r,26s)-8,18,24-trihydroxy-26-[(1e,4s)-4-hydroxy-4-[(2s,3r,4s,5s)-3-hydroxy-4-methoxy-2-methyl-5-propyloxolan-2-yl]but-1-en-1-yl]-7,17,25-trimethoxy-11,13,21,23-tetramethyl-1-oxacyclohexacosa-3,5,9,11,19,21-hexaen-2-one

C45H72O12 (804.5023512)


   

1-{5-[2-({3-[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]-5-(1,2-dihydroxyethyl)-4-hydroxyoxolan-2-yl}oxy)ethyl]-6-methylheptan-2-yl}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,7-pentol

1-{5-[2-({3-[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]-5-(1,2-dihydroxyethyl)-4-hydroxyoxolan-2-yl}oxy)ethyl]-6-methylheptan-2-yl}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,7-pentol

C41H72O15 (804.4870962)


   

1-{5-[2-({5-[(3,5-dihydroxy-4-methoxyoxan-2-yl)oxy]-3-hydroxy-4-methoxyoxan-2-yl}oxy)ethyl]-6-methylheptan-2-yl}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,6,7-hexol

1-{5-[2-({5-[(3,5-dihydroxy-4-methoxyoxan-2-yl)oxy]-3-hydroxy-4-methoxyoxan-2-yl}oxy)ethyl]-6-methylheptan-2-yl}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,6,7-hexol

C41H72O15 (804.4870962)


   

(1s,4e,5's,6s,6'r,7r,8s,10r,11r,12r,14s,15s,16s,18e,20e,22r,25s,27s,28r,29s)-28-ethyl-7,11,14,15-tetrahydroxy-6'-[(2s)-2-hydroxypropyl]-5',6,8,10,12,14,16,22,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,3',9,13-tetrone

(1s,4e,5's,6s,6'r,7r,8s,10r,11r,12r,14s,15s,16s,18e,20e,22r,25s,27s,28r,29s)-28-ethyl-7,11,14,15-tetrahydroxy-6'-[(2s)-2-hydroxypropyl]-5',6,8,10,12,14,16,22,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,3',9,13-tetrone

C45H72O12 (804.5023512)


   

(1s,2r,3r,5r,7r,10s,11r,14r,15s)-3-(acetyloxy)-15-[(2s,3r,5s)-2-(acetyloxy)-5-[(1s)-1,2-bis(acetyloxy)-2-methylpropyl]oxolan-3-yl]-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl (2e)-3-phenylprop-2-enoate

(1s,2r,3r,5r,7r,10s,11r,14r,15s)-3-(acetyloxy)-15-[(2s,3r,5s)-2-(acetyloxy)-5-[(1s)-1,2-bis(acetyloxy)-2-methylpropyl]oxolan-3-yl]-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl (2e)-3-phenylprop-2-enoate

C47H64O11 (804.4448394)


   

1-{5-[({3-[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]-5-(1,2-dihydroxyethyl)-4-hydroxyoxolan-2-yl}oxy)methyl]-6-methylhept-3-en-2-yl}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,6,7-hexol

1-{5-[({3-[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]-5-(1,2-dihydroxyethyl)-4-hydroxyoxolan-2-yl}oxy)methyl]-6-methylhept-3-en-2-yl}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,6,7-hexol

C40H68O16 (804.4507128)


   

(1r,2r,3s,3as,3bs,5s,5as,6r,7s,9as,9br,11ar)-1-[(2r,3e,5s)-5-({[(2r,3r,4s,5s)-3-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-5-[(1r)-1,2-dihydroxyethyl]-4-hydroxyoxolan-2-yl]oxy}methyl)-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,6,7-hexol

(1r,2r,3s,3as,3bs,5s,5as,6r,7s,9as,9br,11ar)-1-[(2r,3e,5s)-5-({[(2r,3r,4s,5s)-3-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-5-[(1r)-1,2-dihydroxyethyl]-4-hydroxyoxolan-2-yl]oxy}methyl)-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,6,7-hexol

C40H68O16 (804.4507128)


   

(3e,5e,7r,8r,9e,11e,13r,17r,18r,19e,21e,23r,24s,25r,26s)-8,18,24-trihydroxy-26-[(1e,4s)-4-hydroxy-4-[(2r,3r)-3-[(1r,2s)-2-hydroxy-1-methoxypentyl]-2-methyloxiran-2-yl]but-1-en-1-yl]-7,17,25-trimethoxy-11,13,21,23-tetramethyl-1-oxacyclohexacosa-3,5,9,11,19,21-hexaen-2-one

(3e,5e,7r,8r,9e,11e,13r,17r,18r,19e,21e,23r,24s,25r,26s)-8,18,24-trihydroxy-26-[(1e,4s)-4-hydroxy-4-[(2r,3r)-3-[(1r,2s)-2-hydroxy-1-methoxypentyl]-2-methyloxiran-2-yl]but-1-en-1-yl]-7,17,25-trimethoxy-11,13,21,23-tetramethyl-1-oxacyclohexacosa-3,5,9,11,19,21-hexaen-2-one

C45H72O12 (804.5023512)


   

1-(2-amino-3-phenylpropanoyl)-n-(1-{2-[(1-{[1-(c-hydroxycarbonimidoyl)-3-methylbutyl]-c-hydroxycarbonimidoyl}-2-(1h-indol-3-yl)ethyl)-c-hydroxycarbonimidoyl]pyrrolidin-1-yl}-1-oxo-3-phenylpropan-2-yl)pyrrolidine-2-carboximidic acid

1-(2-amino-3-phenylpropanoyl)-n-(1-{2-[(1-{[1-(c-hydroxycarbonimidoyl)-3-methylbutyl]-c-hydroxycarbonimidoyl}-2-(1h-indol-3-yl)ethyl)-c-hydroxycarbonimidoyl]pyrrolidin-1-yl}-1-oxo-3-phenylpropan-2-yl)pyrrolidine-2-carboximidic acid

C45H56N8O6 (804.4322596)


   

(2r,3s)-2-{[(2s)-2-(dimethylamino)-3-(4-methoxyphenyl)propanoyl]oxy}-n-[(1s)-1-{[(1s)-2-(4-hydroxyphenyl)-1-{[(2s)-3-(4-hydroxyphenyl)-1-methoxy-1-oxopropan-2-yl](methyl)carbamoyl}ethyl](methyl)carbamoyl}-2-methylpropyl]-3-methylpentanimidic acid

(2r,3s)-2-{[(2s)-2-(dimethylamino)-3-(4-methoxyphenyl)propanoyl]oxy}-n-[(1s)-1-{[(1s)-2-(4-hydroxyphenyl)-1-{[(2s)-3-(4-hydroxyphenyl)-1-methoxy-1-oxopropan-2-yl](methyl)carbamoyl}ethyl](methyl)carbamoyl}-2-methylpropyl]-3-methylpentanimidic acid

C44H60N4O10 (804.430922)


   

(1r,2r,3s,3as,3bs,5s,5ar,6r,7s,9as,9br,11ar)-1-[(2r,5r)-5-(2-{[(2r,3r,4r,5r)-5-{[(2s,3r,4s,5r)-3,5-dihydroxy-4-methoxyoxan-2-yl]oxy}-3-hydroxy-4-methoxyoxan-2-yl]oxy}ethyl)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,6,7-hexol

(1r,2r,3s,3as,3bs,5s,5ar,6r,7s,9as,9br,11ar)-1-[(2r,5r)-5-(2-{[(2r,3r,4r,5r)-5-{[(2s,3r,4s,5r)-3,5-dihydroxy-4-methoxyoxan-2-yl]oxy}-3-hydroxy-4-methoxyoxan-2-yl]oxy}ethyl)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,6,7-hexol

C41H72O15 (804.4870962)


   

3-hydroxy-6-{[5-(2-hydroxy-2,5,8a-trimethyl-5-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}-hexahydro-1h-naphthalen-1-yl)-3-methylpent-1-en-3-yl]oxy}-2-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-4-yl acetate

3-hydroxy-6-{[5-(2-hydroxy-2,5,8a-trimethyl-5-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}-hexahydro-1h-naphthalen-1-yl)-3-methylpent-1-en-3-yl]oxy}-2-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-4-yl acetate

C40H68O16 (804.4507128)


   

8,18,24-trihydroxy-26-[4-hydroxy-4-(3-hydroxy-4-methoxy-2-methyl-5-propyloxolan-2-yl)but-1-en-1-yl]-7,17,25-trimethoxy-11,13,21,23-tetramethyl-1-oxacyclohexacosa-3,5,9,11,19,21-hexaen-2-one

8,18,24-trihydroxy-26-[4-hydroxy-4-(3-hydroxy-4-methoxy-2-methyl-5-propyloxolan-2-yl)but-1-en-1-yl]-7,17,25-trimethoxy-11,13,21,23-tetramethyl-1-oxacyclohexacosa-3,5,9,11,19,21-hexaen-2-one

C45H72O12 (804.5023512)


   

6-[(4r,6s)-8-[(3r,9s,10s,12r)-2-[(4r)-5-(ethoxycarbonyl)-4-hydroxyoxolan-2-yl]-15-hydroxy-3-methoxy-2,4,10,12-tetramethyl-1,6,8-trioxadispiro[4.1.5⁷.3⁵]pentadec-13-en-9-yl]-5-hydroxy-4,6-dimethyl-7-oxononan-2-yl]-2-hydroxy-3-methylbenzoic acid

6-[(4r,6s)-8-[(3r,9s,10s,12r)-2-[(4r)-5-(ethoxycarbonyl)-4-hydroxyoxolan-2-yl]-15-hydroxy-3-methoxy-2,4,10,12-tetramethyl-1,6,8-trioxadispiro[4.1.5⁷.3⁵]pentadec-13-en-9-yl]-5-hydroxy-4,6-dimethyl-7-oxononan-2-yl]-2-hydroxy-3-methylbenzoic acid

C43H64O14 (804.4295844)


   

(4s,5s)-5-[(s)-amino(hydroxy)methyl]-2-[(3-{[(3s)-6-{[(3s)-3-amino-6-{[(4r)-4,6-diamino-2-oxohexyl]amino}-1-hydroxyhexylidene]amino}-1-hydroxy-3-[(1-hydroxyethylidene)amino]hexylidene]amino}-4,5-dihydroxy-6-[(c-hydroxycarbonimidoyloxy)methyl]oxan-2-yl)amino]-4,5-dihydro-3h-imidazole-4-carboxylic acid

(4s,5s)-5-[(s)-amino(hydroxy)methyl]-2-[(3-{[(3s)-6-{[(3s)-3-amino-6-{[(4r)-4,6-diamino-2-oxohexyl]amino}-1-hydroxyhexylidene]amino}-1-hydroxy-3-[(1-hydroxyethylidene)amino]hexylidene]amino}-4,5-dihydroxy-6-[(c-hydroxycarbonimidoyloxy)methyl]oxan-2-yl)amino]-4,5-dihydro-3h-imidazole-4-carboxylic acid

C32H60N12O12 (804.445344)


   

3-[(4s,7s,10s,13r)-17-(dodecan-2-yl)-6,9,12,15,16-pentahydroxy-13-(hydroxymethyl)-10-(1h-indol-3-ylmethyl)-2-oxo-4-phenyl-1-oxa-5,8,11,14-tetraazacycloheptadeca-5,8,11,14-tetraen-7-yl]propanimidic acid

3-[(4s,7s,10s,13r)-17-(dodecan-2-yl)-6,9,12,15,16-pentahydroxy-13-(hydroxymethyl)-10-(1h-indol-3-ylmethyl)-2-oxo-4-phenyl-1-oxa-5,8,11,14-tetraazacycloheptadeca-5,8,11,14-tetraen-7-yl]propanimidic acid

C43H60N6O9 (804.4421550000001)


   

(4e,5'r,6r,6'r,7s,8r,10s,11s,12r,14s,15r,16s,18e,20e,22s,27r,28r,29s)-22-ethyl-7,11,14,15-tetrahydroxy-6'-[(2s)-2-hydroxypropyl]-5',6,8,10,12,14,16,28,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,3',9,13-tetrone

(4e,5'r,6r,6'r,7s,8r,10s,11s,12r,14s,15r,16s,18e,20e,22s,27r,28r,29s)-22-ethyl-7,11,14,15-tetrahydroxy-6'-[(2s)-2-hydroxypropyl]-5',6,8,10,12,14,16,28,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,3',9,13-tetrone

C45H72O12 (804.5023512)


   

n-{3-[12,18-dibenzyl-1,4,7,10,13,16-hexahydroxy-9-(hydroxymethyl)-19-oxo-6-(sec-butyl)-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-15-yl]propyl}guanidine

n-{3-[12,18-dibenzyl-1,4,7,10,13,16-hexahydroxy-9-(hydroxymethyl)-19-oxo-6-(sec-butyl)-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-15-yl]propyl}guanidine

C40H56N10O8 (804.4282376000001)


   

(3e,5e,7r,8r,9e,11e,17r,18r,19e,21e,23r,24s,25r,26s)-8,18,24-trihydroxy-26-[(1e,4s)-4-hydroxy-4-{3-[(1r,2s)-2-hydroxy-1-methoxypentyl]-2-methyloxiran-2-yl}but-1-en-1-yl]-7,17,25-trimethoxy-11,13,21,23-tetramethyl-1-oxacyclohexacosa-3,5,9,11,19,21-hexaen-2-one

(3e,5e,7r,8r,9e,11e,17r,18r,19e,21e,23r,24s,25r,26s)-8,18,24-trihydroxy-26-[(1e,4s)-4-hydroxy-4-{3-[(1r,2s)-2-hydroxy-1-methoxypentyl]-2-methyloxiran-2-yl}but-1-en-1-yl]-7,17,25-trimethoxy-11,13,21,23-tetramethyl-1-oxacyclohexacosa-3,5,9,11,19,21-hexaen-2-one

C45H72O12 (804.5023512)


   

2-{[2-(dimethylamino)-3-(4-methoxyphenyl)propanoyl]oxy}-n-(1-{[2-(4-hydroxyphenyl)-1-{[3-(4-hydroxyphenyl)-1-methoxy-1-oxopropan-2-yl](methyl)carbamoyl}ethyl](methyl)carbamoyl}-2-methylpropyl)-3-methylpentanimidic acid

2-{[2-(dimethylamino)-3-(4-methoxyphenyl)propanoyl]oxy}-n-(1-{[2-(4-hydroxyphenyl)-1-{[3-(4-hydroxyphenyl)-1-methoxy-1-oxopropan-2-yl](methyl)carbamoyl}ethyl](methyl)carbamoyl}-2-methylpropyl)-3-methylpentanimidic acid

C44H60N4O10 (804.430922)


   

(1s,4e,5'r,6r,6'r,7s,8r,10s,11s,12r,14r,15r,16s,18e,20e,22s,25s,27r,28r,29s)-22-ethyl-7,11,14,15-tetrahydroxy-6'-[(2s)-2-hydroxypropyl]-5',6,8,10,12,14,16,28,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,3',9,13-tetrone

(1s,4e,5'r,6r,6'r,7s,8r,10s,11s,12r,14r,15r,16s,18e,20e,22s,25s,27r,28r,29s)-22-ethyl-7,11,14,15-tetrahydroxy-6'-[(2s)-2-hydroxypropyl]-5',6,8,10,12,14,16,28,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,3',9,13-tetrone

C45H72O12 (804.5023512)


   

(2r)-3-[(2s,5r,6r,8s)-8-[(2r,3e)-4-[(2r,4'ar,5r,6's,8'r,8'as)-8'-hydroxy-6'-[(1s,3s)-1-hydroxy-3-[(2s,3r,6r)-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]butyl]-7'-methylidene-hexahydrospiro[oxolane-2,2'-pyrano[3,2-b]pyran]-5-yl]but-3-en-2-yl]-5-hydroxy-10-methyl-1,7-dioxaspiro[5.5]undec-10-en-2-yl]-2-hydroxy-2-methylpropanoic acid

(2r)-3-[(2s,5r,6r,8s)-8-[(2r,3e)-4-[(2r,4'ar,5r,6's,8'r,8'as)-8'-hydroxy-6'-[(1s,3s)-1-hydroxy-3-[(2s,3r,6r)-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]butyl]-7'-methylidene-hexahydrospiro[oxolane-2,2'-pyrano[3,2-b]pyran]-5-yl]but-3-en-2-yl]-5-hydroxy-10-methyl-1,7-dioxaspiro[5.5]undec-10-en-2-yl]-2-hydroxy-2-methylpropanoic acid

C44H68O13 (804.4659678)